Fixed typos (#27202)
This commit is contained in:
committed by
Randell Dawson
parent
edb3548826
commit
d37f5a7751
@ -13,7 +13,7 @@ A quadratic equation generally takes the form: <em>ax<sup>2</sup> + bx + c</em>
|
||||
<pre><em>ax<sup>2</sup> + bx = -c</em></pre>
|
||||
|
||||
2. Make the coefficient of x<sup>2</sup> equal to 1 by dividing both sides of the equation by <em>a</em> so that we now have: <br>
|
||||
<pre>x<sup>2</sup> + (<sup>b</sup>/<sub>a</sub>)x = - (<sup>c</sup>/<sub>a</sub>)</pre>
|
||||
<pre>x<sup>2</sup> + (<sup>b</sup>/<sub>a</sub>)x = -(<sup>c</sup>/<sub>a</sub>)</pre>
|
||||
|
||||
3. Next, add the square of half of the coefficient of the <em>x</em>-term to both sides of the equation: <br>
|
||||
<pre>x<sup>2</sup> + (<sup>b</sup>/<sub>a</sub>)x + (<sup>b</sup>/<sub>2a</sub>)<sup>2</sup> = (<sup>b</sup>/<sub>2a</sub>)<sup>2</sup> - (<sup>c</sup>/<sub>a</sub>)</pre>
|
||||
@ -21,14 +21,14 @@ A quadratic equation generally takes the form: <em>ax<sup>2</sup> + bx + c</em>
|
||||
4. Completing the square on the Left Hand Side and simplifying the Right Hand Side of the above equation, we have:
|
||||
<pre>(x<sup></sup> + <sup>b</sup>/<sub>2a</sub>)<sup>2</sup> = (<sup>b<sup>2</sup></sup>/<sub>4a<sup>2</sup></sub>) - (<sup>c</sup>/<sub>a</sub>)</pre>
|
||||
|
||||
5. Further simplpfying the Right Hand Side,
|
||||
<pre>(x<sup></sup> + <sup>b</sup>/<sub>2a</sub>)<sup>2</sup> = (b<sup>2</sup> - 4ac)/4a<sup>2</sup> </pre>
|
||||
5. Further simplifying the Right Hand Side,
|
||||
<pre>(x<sup></sup> + <sup>b</sup>/<sub>2a</sub>)<sup>2</sup> = (b<sup>2</sup> - 4ac) ÷ 4a<sup>2</sup> </pre>
|
||||
|
||||
6. Finding the square root of both sides of the equation,
|
||||
<pre>x<sup></sup> + <sup>b</sup>/<sub>2a</sub> = √(b<sup>2</sup> - 4ac) ÷ 2a </pre>
|
||||
<pre>x<sup></sup> + <sup>b</sup>/<sub>2a</sub> = ±((b<sup>2</sup> - 4ac)<sup>½</sup> ÷ 2a) </pre>
|
||||
|
||||
7. By making x the subject of our formula, we are able to solve for its value completely:
|
||||
<pre>x<sup></sup> = -b ± √(b<sup>2</sup> - 4ac) ÷ 2a </pre>
|
||||
<pre>x<sup></sup> = (-b ± (b<sup>2</sup> - 4ac)<sup>½</sup>) ÷ 2a </pre>
|
||||
|
||||
#### More Information:
|
||||
<!-- Please add any articles you think might be helpful to read before writing the article -->
|
||||
|
Reference in New Issue
Block a user