Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-145-how-many-reversible-numbers-are-there-below-one-billion.md
gikf bfc21e4c40 fix(curriculum): clean-up Project Euler 141-160 (#42750)
* fix: clean-up Project Euler 141-160

* fix: corrections from review

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

* fix: use different notation for consistency

* Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-144-investigating-multiple-reflections-of-a-laser-beam.md

Co-authored-by: gikf <60067306+gikf@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-14 13:05:12 +02:00

977 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f3fd1000cf542c50ff10 Problem 145: How many reversible numbers are there below one-billion? 5 301774 problem-145-how-many-reversible-numbers-are-there-below-one-billion

--description--

Some positive integers n have the property that the sum [ n + reverse(n) ] consists entirely of odd (decimal) digits. For instance, 36 + 63 = 99 and 409 + 904 = 1313. We will call such numbers reversible; so 36, 63, 409, and 904 are reversible. Leading zeroes are not allowed in either n or reverse(n).

There are 120 reversible numbers below one-thousand.

How many reversible numbers are there below one-billion ({10}^9)?

--hints--

reversibleNumbers() should return 608720.

assert.strictEqual(reversibleNumbers(), 608720);

--seed--

--seed-contents--

function reversibleNumbers() {

  return true;
}

reversibleNumbers();

--solutions--

// solution required