Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-160-factorial-trailing-digits.md
gikf bfc21e4c40 fix(curriculum): clean-up Project Euler 141-160 (#42750)
* fix: clean-up Project Euler 141-160

* fix: corrections from review

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

* fix: use different notation for consistency

* Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-144-investigating-multiple-reflections-of-a-laser-beam.md

Co-authored-by: gikf <60067306+gikf@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-14 13:05:12 +02:00

827 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f40d1000cf542c50ff1f Problem 160: Factorial trailing digits 5 301794 problem-160-factorial-trailing-digits

--description--

For any N, let f(N) be the last five digits before the trailing zeroes in N!.

For example,

$$\begin{align} & 9! = 362880 \; \text{so} \; f(9) = 36288 \\ & 10! = 3628800 \; \text{so} \; f(10) = 36288 \\ & 20! = 2432902008176640000 \; \text{so} \; f(20) = 17664 \end{align}$$

Find f(1,000,000,000,000)

--hints--

factorialTrailingDigits() should return 16576.

assert.strictEqual(factorialTrailingDigits(), 16576);

--seed--

--seed-contents--

function factorialTrailingDigits() {

  return true;
}

factorialTrailingDigits();

--solutions--

// solution required