* fix: clean-up Project Euler 141-160 * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: use different notation for consistency * Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-144-investigating-multiple-reflections-of-a-laser-beam.md Co-authored-by: gikf <60067306+gikf@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
827 B
827 B
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f40d1000cf542c50ff1f | Problem 160: Factorial trailing digits | 5 | 301794 | problem-160-factorial-trailing-digits |
--description--
For any N
, let f(N)
be the last five digits before the trailing zeroes in N!
.
For example,
$$\begin{align} & 9! = 362880 \; \text{so} \; f(9) = 36288 \\ & 10! = 3628800 \; \text{so} \; f(10) = 36288 \\ & 20! = 2432902008176640000 \; \text{so} \; f(20) = 17664 \end{align}$$
Find f(1,000,000,000,000)
--hints--
factorialTrailingDigits()
should return 16576
.
assert.strictEqual(factorialTrailingDigits(), 16576);
--seed--
--seed-contents--
function factorialTrailingDigits() {
return true;
}
factorialTrailingDigits();
--solutions--
// solution required