Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-160-factorial-trailing-digits.md
gikf bfc21e4c40 fix(curriculum): clean-up Project Euler 141-160 (#42750)
* fix: clean-up Project Euler 141-160

* fix: corrections from review

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

* fix: use different notation for consistency

* Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-144-investigating-multiple-reflections-of-a-laser-beam.md

Co-authored-by: gikf <60067306+gikf@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-14 13:05:12 +02:00

49 lines
827 B
Markdown

---
id: 5900f40d1000cf542c50ff1f
title: 'Problem 160: Factorial trailing digits'
challengeType: 5
forumTopicId: 301794
dashedName: problem-160-factorial-trailing-digits
---
# --description--
For any $N$, let $f(N)$ be the last five digits before the trailing zeroes in $N!$.
For example,
$$\begin{align}
& 9! = 362880 \\; \text{so} \\; f(9) = 36288 \\\\
& 10! = 3628800 \\; \text{so} \\; f(10) = 36288 \\\\
& 20! = 2432902008176640000 \\; \text{so} \\; f(20) = 17664
\end{align}$$
Find $f(1,000,000,000,000)$
# --hints--
`factorialTrailingDigits()` should return `16576`.
```js
assert.strictEqual(factorialTrailingDigits(), 16576);
```
# --seed--
## --seed-contents--
```js
function factorialTrailingDigits() {
return true;
}
factorialTrailingDigits();
```
# --solutions--
```js
// solution required
```