Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-212-combined-volume-of-cuboids.md
gikf eef1805fe6 fix(curriculum): clean-up Project Euler 201-220 (#42826)
* fix: clean-up Project Euler 201-220

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-15 09:20:31 +02:00

62 lines
1.9 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f4411000cf542c50ff53
title: 'Problem 212: Combined Volume of Cuboids'
challengeType: 5
forumTopicId: 301854
dashedName: problem-212-combined-volume-of-cuboids
---
# --description--
An axis-aligned cuboid, specified by parameters $\{ (x_0,y_0,z_0), (dx,dy,dz) \}$, consists of all points ($X$,$Y$,$Z$) such that $x_0 ≤ X ≤ x_0 + dx$, $y_0 ≤ Y ≤ y_0 + dy$ and $z_0 ≤ Z ≤ z_0 + dz$. The volume of the cuboid is the product, $dx × dy × dz$. The combined volume of a collection of cuboids is the volume of their union and will be less than the sum of the individual volumes if any cuboids overlap.
Let $C_1, \ldots, C_{50000}$ be a collection of 50000 axis-aligned cuboids such that $C_n$ has parameters
$$\begin{align}
& x_0 = S_{6n - 5} \\; \text{modulo} \\; 10000 \\\\
& y_0 = S_{6n - 4} \\; \text{modulo} \\; 10000 \\\\
& z_0 = S_{6n - 3} \\; \text{modulo} \\; 10000 \\\\
& dx = 1 + (S_{6n - 2} \\; \text{modulo} \\; 399) \\\\
& dy = 1 + (S_{6n - 1} \\; \text{modulo} \\; 399) \\\\
& dz = 1 + (S_{6n} \\; \text{modulo} \\; 399) \\\\
\end{align}$$
where $S_1, \ldots, S_{300000}$ come from the "Lagged Fibonacci Generator":
For $1 ≤ k ≤ 55$, $S_k = [100003 - 200003k + 300007k^3] \\; (modulo \\; 1000000)$
For $56 ≤ k$, $S_k = [S_{k - 24} + S_{k - 55}] \\; (modulo \\; 1000000)$
Thus, $C_1$ has parameters $\{(7,53,183), (94,369,56)\}$, $C_2$ has parameters $\{(2383,3563,5079), (42,212,344)\}$, and so on.
The combined volume of the first 100 cuboids, $C_1, \ldots, C_{100}$, is 723581599.
What is the combined volume of all 50000 cuboids, $C_1, \ldots, C_{50000}$?
# --hints--
`combinedValueOfCuboids()` should return `328968937309`.
```js
assert.strictEqual(combinedValueOfCuboids(), 328968937309);
```
# --seed--
## --seed-contents--
```js
function combinedValueOfCuboids() {
return true;
}
combinedValueOfCuboids();
```
# --solutions--
```js
// solution required
```