* fix: clean-up Project Euler 281-300 * fix: missing image extension * fix: missing power Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing subscript Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
53 lines
1.1 KiB
Markdown
53 lines
1.1 KiB
Markdown
---
|
|
id: 5900f4951000cf542c50ffa8
|
|
title: 'Problem 297: Zeckendorf Representation'
|
|
challengeType: 5
|
|
forumTopicId: 301949
|
|
dashedName: problem-297-zeckendorf-representation
|
|
---
|
|
|
|
# --description--
|
|
|
|
Each new term in the Fibonacci sequence is generated by adding the previous two terms.
|
|
|
|
Starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89.
|
|
|
|
Every positive integer can be uniquely written as a sum of nonconsecutive terms of the Fibonacci sequence. For example, 100 = 3 + 8 + 89.
|
|
|
|
Such a sum is called the Zeckendorf representation of the number.
|
|
|
|
For any integer $n>0$, let $z(n)$ be the number of terms in the Zeckendorf representation of $n$.
|
|
|
|
Thus, $z(5) = 1$, $z(14) = 2$, $z(100) = 3$ etc.
|
|
|
|
Also, for $0 < n < {10}^6$, $\sum z(n) = 7\\,894\\,453$.
|
|
|
|
Find $\sum z(n)$ for $0 < n < {10}^{17}$.
|
|
|
|
# --hints--
|
|
|
|
`zeckendorfRepresentation()` should return `2252639041804718000`.
|
|
|
|
```js
|
|
assert.strictEqual(zeckendorfRepresentation(), 2252639041804718000);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function zeckendorfRepresentation() {
|
|
|
|
return true;
|
|
}
|
|
|
|
zeckendorfRepresentation();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|