Files
gikf 32dbe23f5e fix(curriculum): clean-up Project Euler 301-320 (#42926)
* fix: clean-up Project Euler 301-320

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-21 17:59:56 +02:00

1.3 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f49b1000cf542c50ffad Problem 302: Strong Achilles Numbers 5 301956 problem-302-strong-achilles-numbers

--description--

A positive integer n is powerful if p^2 is a divisor of n for every prime factor p in n.

A positive integer n is a perfect power if n can be expressed as a power of another positive integer.

A positive integer n is an Achilles number if n is powerful but not a perfect power. For example, 864 and 1800 are Achilles numbers: 864 = 2^5 \times 3^3 and 1800 = 2^3 \times 3^2 \times 5^2.

We shall call a positive integer S a Strong Achilles number if both S and φ(S) are Achilles numbers. φ denotes Euler's totient function.

For example, 864 is a Strong Achilles number: φ(864) = 288 = 2^5 \times 3^2. However, 1800 isn't a Strong Achilles number because: φ(1800) = 480 = 2^5 \times 3^1 \times 5^1.

There are 7 Strong Achilles numbers below {10}^4 and 656 below {10}^8.

How many Strong Achilles numbers are there below {10}^{18}?

--hints--

strongAchillesNumbers() should return 1170060.

assert.strictEqual(strongAchillesNumbers(), 1170060);

--seed--

--seed-contents--

function strongAchillesNumbers() {

  return true;
}

strongAchillesNumbers();

--solutions--

// solution required