* fix: clean-up Project Euler 301-320 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
51 lines
1.3 KiB
Markdown
51 lines
1.3 KiB
Markdown
---
|
|
id: 5900f49b1000cf542c50ffad
|
|
title: 'Problem 302: Strong Achilles Numbers'
|
|
challengeType: 5
|
|
forumTopicId: 301956
|
|
dashedName: problem-302-strong-achilles-numbers
|
|
---
|
|
|
|
# --description--
|
|
|
|
A positive integer $n$ is powerful if $p^2$ is a divisor of $n$ for every prime factor $p$ in $n$.
|
|
|
|
A positive integer $n$ is a perfect power if $n$ can be expressed as a power of another positive integer.
|
|
|
|
A positive integer $n$ is an Achilles number if $n$ is powerful but not a perfect power. For example, 864 and 1800 are Achilles numbers: $864 = 2^5 \times 3^3$ and $1800 = 2^3 \times 3^2 \times 5^2$.
|
|
|
|
We shall call a positive integer $S$ a Strong Achilles number if both $S$ and $φ(S)$ are Achilles numbers. $φ$ denotes Euler's totient function.
|
|
|
|
For example, 864 is a Strong Achilles number: $φ(864) = 288 = 2^5 \times 3^2$. However, 1800 isn't a Strong Achilles number because: $φ(1800) = 480 = 2^5 \times 3^1 \times 5^1$.
|
|
|
|
There are 7 Strong Achilles numbers below ${10}^4$ and 656 below ${10}^8$.
|
|
|
|
How many Strong Achilles numbers are there below ${10}^{18}$?
|
|
|
|
# --hints--
|
|
|
|
`strongAchillesNumbers()` should return `1170060`.
|
|
|
|
```js
|
|
assert.strictEqual(strongAchillesNumbers(), 1170060);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function strongAchillesNumbers() {
|
|
|
|
return true;
|
|
}
|
|
|
|
strongAchillesNumbers();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|