* fix: clean-up Project Euler 301-320 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.6 KiB
1.6 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4a51000cf542c50ffb7 | Problem 312: Cyclic paths on Sierpiński graphs | 5 | 301968 | problem-312-cyclic-paths-on-sierpiski-graphs |
--description--
- A Sierpiński graph of order-1 (
S_1
) is an equilateral triangle. S_{n + 1}
is obtained fromS_n
by positioning three copies ofS_n
so that every pair of copies has one common corner.

Let C(n)
be the number of cycles that pass exactly once through all the vertices of S_n
. For example, C(3) = 8
because eight such cycles can be drawn on S_3
, as shown below:

It can also be verified that:
$$\begin{align} & C(1) = C(2) = 1 \\ & C(5) = 71\,328\,803\,586\,048 \\ & C(10 000)\bmod {10}^8 = 37\,652\,224 \\ & C(10 000)\bmod {13}^8 = 617\,720\,485 \\ \end{align}$$
Find C(C(C(10\\,000)))\bmod {13}^8
.
--hints--
pathsOnSierpinskiGraphs()
should return 324681947
.
assert.strictEqual(pathsOnSierpinskiGraphs(), 324681947);
--seed--
--seed-contents--
function pathsOnSierpinskiGraphs() {
return true;
}
pathsOnSierpinskiGraphs();
--solutions--
// solution required