* fix: clean-up Project Euler 321-340 * fix: typo * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.4 KiB
1.4 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4b91000cf542c50ffcb | Problem 332: Spherical triangles | 5 | 301990 | problem-332-spherical-triangles |
--description--
A spherical triangle is a figure formed on the surface of a sphere by three great circular arcs intersecting pairwise in three vertices.

Let C(r)
be the sphere with the centre (0,0,0) and radius r
.
Let Z(r)
be the set of points on the surface of C(r)
with integer coordinates.
Let T(r)
be the set of spherical triangles with vertices in Z(r)
. Degenerate spherical triangles, formed by three points on the same great arc, are not included in T(r)
.
Let A(r)
be the area of the smallest spherical triangle in T(r)
.
For example A(14)
is 3.294040 rounded to six decimal places.
Find \displaystyle \sum_{r = 1}^{50} A(r)
. Give your answer rounded to six decimal places.
--hints--
sphericalTriangles()
should return 2717.751525
.
assert.strictEqual(sphericalTriangles(), 2717.751525);
--seed--
--seed-contents--
function sphericalTriangles() {
return true;
}
sphericalTriangles();
--solutions--
// solution required