* fix: clean-up Project Euler 341-360 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
46 lines
788 B
Markdown
46 lines
788 B
Markdown
---
|
||
id: 5900f4c31000cf542c50ffd5
|
||
title: 'Problem 342: The totient of a square is a cube'
|
||
challengeType: 5
|
||
forumTopicId: 302001
|
||
dashedName: problem-342-the-totient-of-a-square-is-a-cube
|
||
---
|
||
|
||
# --description--
|
||
|
||
Consider the number 50.
|
||
|
||
${50}^2 = 2500 = 2^2 × 5^4$, so $φ(2500) = 2 × 4 × 5^3 = 8 × 5^3 = 2^3 × 5^3$. $φ$ denotes Euler's totient function.
|
||
|
||
So 2500 is a square and $φ(2500)$ is a cube.
|
||
|
||
Find the sum of all numbers $n$, $1 < n < {10}^{10}$ such that $φ(n^2)$ is a cube.
|
||
|
||
|
||
# --hints--
|
||
|
||
`totientOfSquare()` should return `5943040885644`.
|
||
|
||
```js
|
||
assert.strictEqual(totientOfSquare(), 5943040885644);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function totientOfSquare() {
|
||
|
||
return true;
|
||
}
|
||
|
||
totientOfSquare();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|