* fix: clean-up Project Euler 341-360 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
49 lines
951 B
Markdown
49 lines
951 B
Markdown
---
|
|
id: 5900f4d41000cf542c50ffe7
|
|
title: 'Problem 360: Scary Sphere'
|
|
challengeType: 5
|
|
forumTopicId: 302021
|
|
dashedName: problem-360-scary-sphere
|
|
---
|
|
|
|
# --description--
|
|
|
|
Given two points ($x_1$, $y_1$, $z_1$) and ($x_2$, $y_2$, $z_2$) in three dimensional space, the Manhattan distance between those points is defined as $|x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|$.
|
|
|
|
Let $C(r)$ be a sphere with radius $r$ and center in the origin $O(0, 0, 0)$.
|
|
|
|
Let $I(r)$ be the set of all points with integer coordinates on the surface of $C(r)$.
|
|
|
|
Let $S(r)$ be the sum of the Manhattan distances of all elements of $I(r)$ to the origin $O$.
|
|
|
|
E.g. $S(45)=34518$.
|
|
|
|
Find $S({10}^{10})$.
|
|
|
|
# --hints--
|
|
|
|
`scarySphere()` should return `878825614395267100`.
|
|
|
|
```js
|
|
assert.strictEqual(scarySphere(), 878825614395267100);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function scarySphere() {
|
|
|
|
return true;
|
|
}
|
|
|
|
scarySphere();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|