Files
gikf 7d9496e52c fix(curriculum): clean-up Project Euler 361-380 (#43002)
* fix: clean-up Project Euler 361-380

* fix: improve wording

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: remove unnecessary paragraph

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-29 12:48:17 -07:00

1008 B
Raw Permalink Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4d61000cf542c50ffe9 Problem 362: Squarefree factors 5 302023 problem-362-squarefree-factors

--description--

Consider the number 54.

54 can be factored in 7 distinct ways into one or more factors larger than 1:

54, 2 × 27, 3 × 18, 6 × 9, 3 × 3 × 6, 2 × 3 × 9 \text{ and } 2 × 3 × 3 × 3

If we require that the factors are all squarefree only two ways remain: 3 × 3 × 6 and 2 × 3 × 3 × 3.

Let's call Fsf(n) the number of ways n can be factored into one or more squarefree factors larger than 1, so Fsf(54) = 2.

Let S(n) be \sum Fsf(k) for k = 2 to n.

S(100) = 193.

Find S(10\\,000\\,000\\,000).

--hints--

squarefreeFactors() should return 457895958010.

assert.strictEqual(squarefreeFactors(), 457895958010);

--seed--

--seed-contents--

function squarefreeFactors() {

  return true;
}

squarefreeFactors();

--solutions--

// solution required