Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-365-a-huge-binomial-coefficient.md
gikf 7d9496e52c fix(curriculum): clean-up Project Euler 361-380 (#43002)
* fix: clean-up Project Euler 361-380

* fix: improve wording

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: remove unnecessary paragraph

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-29 12:48:17 -07:00

874 B
Raw Permalink Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4da1000cf542c50ffec Problem 365: A huge binomial coefficient 5 302026 problem-365-a-huge-binomial-coefficient

--description--

The binomial coefficient \displaystyle\binom{{10}^{18}}{{10}^9} is a number with more than 9 billion (9 × {10}^9) digits.

Let M(n, k, m) denote the binomial coefficient \displaystyle\binom{n}{k} modulo m.

Calculate \sum M({10}^{18}, {10}^9, p \times q \times r) for 1000 &lt; p &lt; q &lt; r &lt; 5000 and p, q, r prime.

--hints--

hugeBinomialCoefficient() should return 162619462356610300.

assert.strictEqual(hugeBinomialCoefficient(), 162619462356610300);

--seed--

--seed-contents--

function hugeBinomialCoefficient() {

  return true;
}

hugeBinomialCoefficient();

--solutions--

// solution required