* fix: clean-up Project Euler 361-380 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: remove unnecessary paragraph * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
43 lines
874 B
Markdown
43 lines
874 B
Markdown
---
|
||
id: 5900f4da1000cf542c50ffec
|
||
title: 'Problem 365: A huge binomial coefficient'
|
||
challengeType: 5
|
||
forumTopicId: 302026
|
||
dashedName: problem-365-a-huge-binomial-coefficient
|
||
---
|
||
|
||
# --description--
|
||
|
||
The binomial coefficient $\displaystyle\binom{{10}^{18}}{{10}^9}$ is a number with more than 9 billion ($9 × {10}^9$) digits.
|
||
|
||
Let $M(n, k, m)$ denote the binomial coefficient $\displaystyle\binom{n}{k}$ modulo $m$.
|
||
|
||
Calculate $\sum M({10}^{18}, {10}^9, p \times q \times r)$ for $1000 < p < q < r < 5000$ and $p$, $q$, $r$ prime.
|
||
|
||
# --hints--
|
||
|
||
`hugeBinomialCoefficient()` should return `162619462356610300`.
|
||
|
||
```js
|
||
assert.strictEqual(hugeBinomialCoefficient(), 162619462356610300);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function hugeBinomialCoefficient() {
|
||
|
||
return true;
|
||
}
|
||
|
||
hugeBinomialCoefficient();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|