Files
gikf 7d9496e52c fix(curriculum): clean-up Project Euler 361-380 (#43002)
* fix: clean-up Project Euler 361-380

* fix: improve wording

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: remove unnecessary paragraph

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-29 12:48:17 -07:00

45 lines
805 B
Markdown

---
id: 5900f4e11000cf542c50fff3
title: 'Problem 372: Pencils of rays'
challengeType: 5
forumTopicId: 302034
dashedName: problem-372-pencils-of-rays
---
# --description--
Let $R(M, N)$ be the number of lattice points ($x$, $y$) which satisfy $M \lt x \le N$, $M \lt y \le N$ and $\left\lfloor\frac{y^2}{x^2}\right\rfloor$ is odd.
We can verify that $R(0, 100) = 3\\,019$ and $R(100, 10\\,000) = 29\\,750\\,422$.
Find $R(2 \times {10}^6, {10}^9)$.
**Note:** $\lfloor x\rfloor$ represents the floor function.
# --hints--
`pencilsOfRays()` should return `301450082318807040`.
```js
assert.strictEqual(pencilsOfRays(), 301450082318807040);
```
# --seed--
## --seed-contents--
```js
function pencilsOfRays() {
return true;
}
pencilsOfRays();
```
# --solutions--
```js
// solution required
```