Files
gikf 7d9496e52c fix(curriculum): clean-up Project Euler 361-380 (#43002)
* fix: clean-up Project Euler 361-380

* fix: improve wording

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: remove unnecessary paragraph

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-29 12:48:17 -07:00

983 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4e41000cf542c50fff5 Problem 375: Minimum of subsequences 5 302037 problem-375-minimum-of-subsequences

--description--

Let S_n be an integer sequence produced with the following pseudo-random number generator:

$$\begin{align} S_0 & = 290\,797 \\ S_{n + 1} & = {S_n}^2\bmod 50\,515\,093 \end{align}$$

Let A(i, j) be the minimum of the numbers S_i, S_{i + 1}, \ldots, S_j for i ≤ j. Let M(N) = \sum A(i, j) for 1 ≤ i ≤ j ≤ N.

We can verify that M(10) = 432\\,256\\,955 and M(10\\,000) = 3\\,264\\,567\\,774\\,119.

Find M(2\\,000\\,000\\,000).

--hints--

minimumOfSubsequences() should return 7435327983715286000.

assert.strictEqual(minimumOfSubsequences(), 7435327983715286000);

--seed--

--seed-contents--

function minimumOfSubsequences() {

  return true;
}

minimumOfSubsequences();

--solutions--

// solution required