* fix: clean-up Project Euler 381-400 * fix: missing image extension * fix: missing subscripts Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.7 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4ed1000cf542c50fffe | Problem 384: Rudin-Shapiro sequence | 5 | 302048 | problem-384-rudin-shapiro-sequence |
--description--
Define the sequence a(n)
as the number of adjacent pairs of ones in the binary expansion of n
(possibly overlapping).
E.g.: a(5) = a({101}_2) = 0
, a(6) = a({110}_2) = 1
, a(7) = a({111}_2) = 2
Define the sequence b(n) = {(-1)}^{a(n)}
. This sequence is called the Rudin-Shapiro sequence.
Also consider the summatory sequence of b(n)
: s(n) = \displaystyle\sum_{i = 0}^{n} b(i)
.
The first couple of values of these sequences are:
$$\begin{array}{lr} n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ a(n) & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 2 \\ b(n) & 1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 \\ s(n) & 1 & 2 & 3 & 2 & 3 & 4 & 3 & 4 \end{array}$$
The sequence s(n)
has the remarkable property that all elements are positive and every positive integer k
occurs exactly k
times.
Define g(t, c)
, with 1 ≤ c ≤ t
, as the index in s(n)
for which t
occurs for the $c$'th time in s(n)
.
E.g.: g(3, 3) = 6
, g(4, 2) = 7
and g(54321, 12345) = 1\\,220\\,847\\,710
.
Let F(n)
be the fibonacci sequence defined by:
$$\begin{align} & F(0) = F(1) = 1 \text{ and} \\ & F(n) = F(n - 1) + F(n - 2) \text{ for } n > 1. \end{align}$$
Define GF(t) = g(F(t), F(t - 1))
.
Find \sum GF(t)
for$ 2 ≤ t ≤ 45$.
--hints--
rudinShapiroSequence()
should return 3354706415856333000
.
assert.strictEqual(rudinShapiroSequence(), 3354706415856333000);
--seed--
--seed-contents--
function rudinShapiroSequence() {
return true;
}
rudinShapiroSequence();
--solutions--
// solution required