Files

727 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f5041000cf542c510016 Problem 407: Idempotents 5 302075 problem-407-idempotents

--description--

If we calculate a^2\bmod 6 for 0 ≤ a ≤ 5 we get: 0, 1, 4, 3, 4, 1.

The largest value of a such that a^2 ≡ a\bmod 6 is 4.

Let's call M(n) the largest value of a < n such that a^2 ≡ a (\text{mod } n). So M(6) = 4.

Find \sum M(n) for 1 ≤ n ≤ {10}^7.

--hints--

idempotents() should return 39782849136421.

assert.strictEqual(idempotents(), 39782849136421);

--seed--

--seed-contents--

function idempotents() {

  return true;
}

idempotents();

--solutions--

// solution required