727 B
727 B
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f5041000cf542c510016 | Problem 407: Idempotents | 5 | 302075 | problem-407-idempotents |
--description--
If we calculate a^2\bmod 6
for 0 ≤ a ≤ 5
we get: 0, 1, 4, 3, 4, 1.
The largest value of a such that a^2 ≡ a\bmod 6
is 4
.
Let's call M(n)
the largest value of a < n
such that a^2 ≡ a (\text{mod } n)
. So M(6) = 4
.
Find \sum M(n)
for 1 ≤ n ≤ {10}^7
.
--hints--
idempotents()
should return 39782849136421
.
assert.strictEqual(idempotents(), 39782849136421);
--seed--
--seed-contents--
function idempotents() {
return true;
}
idempotents();
--solutions--
// solution required