Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-408-admissible-paths-through-a-grid.md

1.1 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f5091000cf542c51001b Problem 408: Admissible paths through a grid 5 302076 problem-408-admissible-paths-through-a-grid

--description--

Let's call a lattice point (x, y) inadmissible if x, y and x + y are all positive perfect squares.

For example, (9, 16) is inadmissible, while (0, 4), (3, 1) and (9, 4) are not.

Consider a path from point (x_1, y_1) to point (x_2, y_2) using only unit steps north or east. Let's call such a path admissible if none of its intermediate points are inadmissible.

Let P(n) be the number of admissible paths from (0, 0) to (n, n). It can be verified that P(5) = 252, P(16) = 596\\,994\\,440 and P(1\\,000)\bmod 1\\,000\\,000\\,007 = 341\\,920\\,854.

Find P(10\\,000\\,000)\bmod 1\\,000\\,000\\,007.

--hints--

admissiblePaths() should return 299742733.

assert.strictEqual(admissiblePaths(), 299742733);

--seed--

--seed-contents--

function admissiblePaths() {

  return true;
}

admissiblePaths();

--solutions--

// solution required