1.1 KiB
1.1 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f5091000cf542c51001b | Problem 408: Admissible paths through a grid | 5 | 302076 | problem-408-admissible-paths-through-a-grid |
--description--
Let's call a lattice point (x
, y
) inadmissible if x
, y
and x + y
are all positive perfect squares.
For example, (9, 16) is inadmissible, while (0, 4), (3, 1) and (9, 4) are not.
Consider a path from point (x_1
, y_1
) to point (x_2
, y_2
) using only unit steps north or east. Let's call such a path admissible if none of its intermediate points are inadmissible.
Let P(n)
be the number of admissible paths from (0, 0) to (n
, n
). It can be verified that P(5) = 252
, P(16) = 596\\,994\\,440
and P(1\\,000)\bmod 1\\,000\\,000\\,007 = 341\\,920\\,854
.
Find P(10\\,000\\,000)\bmod 1\\,000\\,000\\,007
.
--hints--
admissiblePaths()
should return 299742733
.
assert.strictEqual(admissiblePaths(), 299742733);
--seed--
--seed-contents--
function admissiblePaths() {
return true;
}
admissiblePaths();
--solutions--
// solution required