1.1 KiB
1.1 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f5111000cf542c510023 | Problem 420: 2x2 positive integer matrix | 5 | 302090 | problem-420-2x2-positive-integer-matrix |
--description--
A positive integer matrix is a matrix whose elements are all positive integers.
Some positive integer matrices can be expressed as a square of a positive integer matrix in two different ways. Here is an example:
$$\begin{pmatrix} 40 & 12 \\ 48 & 40 \end{pmatrix} = {\begin{pmatrix} 2 & 3 \\ 12 & 2 \end{pmatrix}}^2 = {\begin{pmatrix} 6 & 1 \\ 4 & 6 \end{pmatrix}}^2$$
We define F(N)
as the number of the 2x2 positive integer matrices which have a trace less than N and which can be expressed as a square of a positive integer matrix in two different ways.
We can verify that F(50) = 7
and F(1000) = 1019
.
Find F({10}^7)
.
--hints--
positiveIntegerMatrix()
should return 145159332
.
assert.strictEqual(positiveIntegerMatrix(), 145159332);
--seed--
--seed-contents--
function positiveIntegerMatrix() {
return true;
}
positiveIntegerMatrix();
--solutions--
// solution required