1.7 KiB
1.7 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f5191000cf542c51002b | Problem 428: Necklace of Circles | 5 | 302098 | problem-428-necklace-of-circles |
--description--
Let a
, b
and c
be positive numbers.
Let W
, X
, Y
, Z
be four collinear points where |WX| = a
, |XY| = b
, |YZ| = c
and |WZ| = a + b + c
.
Let C_{\text{in}}
be the circle having the diameter XY
.
Let C_{\text{out}}
be the circle having the diameter WZ
.
The triplet (a
, b
, c
) is called a necklace triplet if you can place k ≥ 3
distinct circles C_1, C_2, \ldots, C_k
such that:
C_i
has no common interior points with anyC_j
for1 ≤ i
,j ≤ k
andi ≠ j
,C_i
is tangent to bothC_{\text{in}}
andC_{\text{out}}
for1 ≤ i ≤ k
,C_i
is tangent toC_{i + 1}
for1 ≤ i < k
, andC_k
is tangent toC_1
.
For example, (5, 5, 5) and (4, 3, 21) are necklace triplets, while it can be shown that (2, 2, 5) is not.

Let T(n)
be the number of necklace triplets (a, b, c)
such that a
, b
and c
are positive integers, and b ≤ n
. For example, T(1) = 9
, T(20) = 732
and T(3\\,000) = 438\\,106
.
Find T(1\\,000\\,000\\,000)
.
--hints--
necklace(1000000000)
should return 747215561862
.
assert.strictEqual(necklace(1000000000), 747215561862);
--seed--
--seed-contents--
function necklace(n) {
return true;
}
necklace(1000000000)
--solutions--
// solution required