1.5 KiB
1.5 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f5241000cf542c510037 | Problem 440: GCD and Tiling | 5 | 302112 | problem-440-gcd-and-tiling |
--description--
We want to tile a board of length n
and height 1 completely, with either 1 × 2 blocks or 1 × 1 blocks with a single decimal digit on top:

For example, here are some of the ways to tile a board of length n = 8
:

Let T(n)
be the number of ways to tile a board of length n
as described above.
For example, T(1) = 10
and T(2) = 101
.
Let S(L)
be the triple sum \sum_{a, b, c} gcd(T(c^a), T(c^b))
for 1 ≤ a, b, c ≤ L
.
For example:
$$\begin{align} & S(2) = 10\,444 \\ & S(3) = 1\,292\,115\,238\,446\,807\,016\,106\,539\,989 \\ & S(4)\bmod 987\,898\,789 = 670\,616\,280. \end{align}$$
Find S(2000)\bmod 987\\,898\\,789
.
--hints--
gcdAndTiling()
should return 970746056
.
assert.strictEqual(gcdAndTiling(), 970746056);
--seed--
--seed-contents--
function gcdAndTiling() {
return true;
}
gcdAndTiling();
--solutions--
// solution required