* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
49 lines
1.3 KiB
Markdown
49 lines
1.3 KiB
Markdown
---
|
|
id: 5900f5311000cf542c510044
|
|
title: 'Problem 453: Lattice Quadrilaterals'
|
|
challengeType: 5
|
|
forumTopicId: 302126
|
|
dashedName: problem-453-lattice-quadrilaterals
|
|
---
|
|
|
|
# --description--
|
|
|
|
A simple quadrilateral is a polygon that has four distinct vertices, has no straight angles and does not self-intersect.
|
|
|
|
Let $Q(m, n)$ be the number of simple quadrilaterals whose vertices are lattice points with coordinates ($x$, $y$) satisfying $0 ≤ x ≤ m$ and $0 ≤ y ≤ n$.
|
|
|
|
For example, $Q(2, 2) = 94$ as can be seen below:
|
|
|
|
<img class="img-responsive center-block" alt="94 quadrilaterals whose vertices are lattice points with coordinates (x, y) satiffying 0 ≤ x ≤ m and 0 ≤ y ≤ n" src="https://cdn.freecodecamp.org/curriculum/project-euler/lattice-quadrilaterals.png" style="background-color: white; padding: 10px;">
|
|
|
|
It can also be verified that $Q(3, 7) = 39\\,590$, $Q(12, 3) = 309\\,000$ and $Q(123, 45) = 70\\,542\\,215\\,894\\,646$.
|
|
|
|
Find $Q(12\\,345, 6\\,789)\bmod 135\\,707\\,531$.
|
|
|
|
# --hints--
|
|
|
|
`latticeQuadrilaterals()` should return `104354107`.
|
|
|
|
```js
|
|
assert.strictEqual(latticeQuadrilaterals(), 104354107);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function latticeQuadrilaterals() {
|
|
|
|
return true;
|
|
}
|
|
|
|
latticeQuadrilaterals();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|