Files
gikf a2b2ef3f75 fix(curriculum): clean-up Project Euler 441-460 (#43068)
* fix: clean-up Project Euler 441-460

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-30 08:20:31 -07:00

49 lines
1.3 KiB
Markdown

---
id: 5900f5311000cf542c510044
title: 'Problem 453: Lattice Quadrilaterals'
challengeType: 5
forumTopicId: 302126
dashedName: problem-453-lattice-quadrilaterals
---
# --description--
A simple quadrilateral is a polygon that has four distinct vertices, has no straight angles and does not self-intersect.
Let $Q(m, n)$ be the number of simple quadrilaterals whose vertices are lattice points with coordinates ($x$, $y$) satisfying $0 ≤ x ≤ m$ and $0 ≤ y ≤ n$.
For example, $Q(2, 2) = 94$ as can be seen below:
<img class="img-responsive center-block" alt="94 quadrilaterals whose vertices are lattice points with coordinates (x, y) satiffying 0 &le; x &le; m and 0 &le; y &le; n" src="https://cdn.freecodecamp.org/curriculum/project-euler/lattice-quadrilaterals.png" style="background-color: white; padding: 10px;">
It can also be verified that $Q(3, 7) = 39\\,590$, $Q(12, 3) = 309\\,000$ and $Q(123, 45) = 70\\,542\\,215\\,894\\,646$.
Find $Q(12\\,345, 6\\,789)\bmod 135\\,707\\,531$.
# --hints--
`latticeQuadrilaterals()` should return `104354107`.
```js
assert.strictEqual(latticeQuadrilaterals(), 104354107);
```
# --seed--
## --seed-contents--
```js
function latticeQuadrilaterals() {
return true;
}
latticeQuadrilaterals();
```
# --solutions--
```js
// solution required
```