* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f5351000cf542c510047 | Problem 456: Triangles containing the origin II | 5 | 302130 | problem-456-triangles-containing-the-origin-ii |
--description--
Define:
$$\begin{align} & x_n = ({1248}^n\bmod 32323) - 16161 \\ & y_n = ({8421}^n\bmod 30103) - 15051 \\ & P_n = \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \end{align}$$
For example,
P_8 = \\{(-14913, -6630), (-10161, 5625), (5226, 11896), (8340, -10778), (15852, -5203), (-15165, 11295), (-1427, -14495), (12407, 1060)\\}
Let C(n)
be the number of triangles whose vertices are in P_n
which contain the origin in the interior.
Examples:
$$\begin{align} & C(8) = 20 \\ & C(600) = 8\,950\,634 \\ & C(40\,000) = 2\,666\,610\,948\,988 \end{align}$$
Find C(2\\,000\\,000)
.
--hints--
trianglesContainingOriginTwo()
should return 333333208685971500
.
assert.strictEqual(trianglesContainingOriginTwo(), 333333208685971500);
--seed--
--seed-contents--
function trianglesContainingOriginTwo() {
return true;
}
trianglesContainingOriginTwo();
--solutions--
// solution required