Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-456-triangles-containing-the-origin-ii.md
gikf a2b2ef3f75 fix(curriculum): clean-up Project Euler 441-460 (#43068)
* fix: clean-up Project Euler 441-460

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-30 08:20:31 -07:00

60 lines
1.2 KiB
Markdown

---
id: 5900f5351000cf542c510047
title: 'Problem 456: Triangles containing the origin II'
challengeType: 5
forumTopicId: 302130
dashedName: problem-456-triangles-containing-the-origin-ii
---
# --description--
Define:
$$\begin{align}
& x_n = ({1248}^n\bmod 32323) - 16161 \\\\
& y_n = ({8421}^n\bmod 30103) - 15051 \\\\
& P_n = \\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\\}
\end{align}$$
For example,
$$P_8 = \\{(-14913, -6630), (-10161, 5625), (5226, 11896), (8340, -10778), (15852, -5203), (-15165, 11295), (-1427, -14495), (12407, 1060)\\}$$
Let $C(n)$ be the number of triangles whose vertices are in $P_n$ which contain the origin in the interior.
Examples:
$$\begin{align}
& C(8) = 20 \\\\
& C(600) = 8\\,950\\,634 \\\\
& C(40\\,000) = 2\\,666\\,610\\,948\\,988
\end{align}$$
Find $C(2\\,000\\,000)$.
# --hints--
`trianglesContainingOriginTwo()` should return `333333208685971500`.
```js
assert.strictEqual(trianglesContainingOriginTwo(), 333333208685971500);
```
# --seed--
## --seed-contents--
```js
function trianglesContainingOriginTwo() {
return true;
}
trianglesContainingOriginTwo();
```
# --solutions--
```js
// solution required
```