* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
60 lines
1.2 KiB
Markdown
60 lines
1.2 KiB
Markdown
---
|
|
id: 5900f5351000cf542c510047
|
|
title: 'Problem 456: Triangles containing the origin II'
|
|
challengeType: 5
|
|
forumTopicId: 302130
|
|
dashedName: problem-456-triangles-containing-the-origin-ii
|
|
---
|
|
|
|
# --description--
|
|
|
|
Define:
|
|
|
|
$$\begin{align}
|
|
& x_n = ({1248}^n\bmod 32323) - 16161 \\\\
|
|
& y_n = ({8421}^n\bmod 30103) - 15051 \\\\
|
|
& P_n = \\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\\}
|
|
\end{align}$$
|
|
|
|
For example,
|
|
$$P_8 = \\{(-14913, -6630), (-10161, 5625), (5226, 11896), (8340, -10778), (15852, -5203), (-15165, 11295), (-1427, -14495), (12407, 1060)\\}$$
|
|
|
|
Let $C(n)$ be the number of triangles whose vertices are in $P_n$ which contain the origin in the interior.
|
|
|
|
Examples:
|
|
|
|
$$\begin{align}
|
|
& C(8) = 20 \\\\
|
|
& C(600) = 8\\,950\\,634 \\\\
|
|
& C(40\\,000) = 2\\,666\\,610\\,948\\,988
|
|
\end{align}$$
|
|
|
|
Find $C(2\\,000\\,000)$.
|
|
|
|
# --hints--
|
|
|
|
`trianglesContainingOriginTwo()` should return `333333208685971500`.
|
|
|
|
```js
|
|
assert.strictEqual(trianglesContainingOriginTwo(), 333333208685971500);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function trianglesContainingOriginTwo() {
|
|
|
|
return true;
|
|
}
|
|
|
|
trianglesContainingOriginTwo();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|