Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-464-mbius-function-and-intervals.md
gikf 397a9f0c3e fix(curriculum): clean-up Project Euler 462-480 (#43069)
* fix: clean-up Project Euler 462-480

* fix: missing image extension

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-30 08:32:21 -07:00

58 lines
1.2 KiB
Markdown

---
id: 5900f53d1000cf542c51004f
title: 'Problem 464: Möbius function and intervals'
challengeType: 5
forumTopicId: 302139
dashedName: problem-464-mbius-function-and-intervals
---
# --description--
The Möbius function, denoted $μ(n)$, is defined as:
- $μ(n) = (-1)^{ω(n)}$ if $n$ is squarefree (where $ω(n)$ is the number of distinct prime factors of $n$)
- $μ(n) = 0$ if $n$ is not squarefree.
Let $P(a, b)$ be the number of integers $n$ in the interval $[a, b]$ such that $μ(n) = 1$.
Let $N(a, b)$ be the number of integers $n$ in the interval $[a, b]$ such that $μ(n) = -1$.
For example, $P(2, 10) = 2$ and $N(2, 10) = 4$.
Let $C(n)$ be the number of integer pairs $(a, b)$ such that:
- $1 ≤ a ≤ b ≤ n$,
- $99 \times N(a, b) ≤ 100 \times P(a, b)$, and
- $99 \times P(a, b) ≤ 100 \times N(a, b)$.
For example, $C(10) = 13$, $C(500) = 16\\,676$ and $C(10\\,000) = 20\\,155\\,319$.
Find $C(20\\,000\\,000)$.
# --hints--
`mobiusFunctionAndIntervals()` should return `198775297232878`.
```js
assert.strictEqual(mobiusFunctionAndIntervals(), 198775297232878);
```
# --seed--
## --seed-contents--
```js
function mobiusFunctionAndIntervals() {
return true;
}
mobiusFunctionAndIntervals();
```
# --solutions--
```js
// solution required
```