* fix: clean-up Project Euler 462-480 * fix: missing image extension * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2.0 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f5431000cf542c510056 | Problem 471: Triangle inscribed in ellipse | 5 | 302148 | problem-471-triangle-inscribed-in-ellipse |
--description--
The triangle ΔABC
is inscribed in an ellipse with equation \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
, 0 < 2b < a
, a
and b
integers.
Let r(a, b)
be the radius of the incircle of ΔABC
when the incircle has center (2b, 0)
and A
has coordinates \left(\frac{a}{2}, \frac{\sqrt{3}}{2}b\right)
.
For example, r(3, 1) = \frac{1}{2}, r(6, 2) = 1, r(12, 3) = 2
.


Let G(n) = \sum_{a = 3}^n \sum_{b = 1}^{\left\lfloor\frac{a - 1}{2} \right\rfloor} r(a, b)
You are given G(10) = 20.59722222
, G(100) = 19223.60980
(rounded to 10 significant digits).
Find G({10}^{11})
. Give your answer as a string in scientific notation rounded to 10 significant digits. Use a lowercase e
to separate mantissa and exponent.
For G(10)
the answer would have been 2.059722222e1
--hints--
triangleInscribedInEllipse()
should return a string.
assert(typeof triangleInscribedInEllipse() === 'string');
triangleInscribedInEllipse()
should return the string 1.895093981e31
.
assert.strictEqual(triangleInscribedInEllipse(), '1.895093981e31');
--seed--
--seed-contents--
function triangleInscribedInEllipse() {
return true;
}
triangleInscribedInEllipse();
--solutions--
// solution required