1.4 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f43c1000cf542c50ff4e | Problema 207: Equazioni di partizione di numeri interi | 5 | 301848 | problem-207-integer-partition-equations |
--description--
Per alcuni numeri interi positivi k
esiste una partizione intera del modulo 4^t = 2^t + k
,
dove 4^t
, 2^t
, e k
sono tutti interi positivi e t
è un numero reale.
Le prime due partizioni sono 4^1 = 2^1 + 2
and 4^{1.584\\,962\\,5\ldots} = 2^{1.584\\,962\\,5\ldots} + 6
.
Le partizioni dove t
è anche un intero sono chiamate perfette. Per ogni m ≥ 1
sia P(m)
la proporzione di tali partizioni che sono perfette con k ≤ m
.
Così P(6) = \frac{1}{2}
.
Nella tabella seguente sono elencati alcuni valori di P(m)
$$\begin{align} & P(5) = \frac{1}{1} \\ & P(10) = \frac{1}{2} \\ & P(15) = \frac{2}{3} \\ & P(20) = \frac{1}{2} \\ & P(25) = \frac{1}{2} \\ & P(30) = \frac{2}{5} \\ & \ldots \\ & P(180) = \frac{1}{4} \\ & P(185) = \frac{3}{13} \end{align}$$
Trova il più piccolo m
per il quale $P(m) < \frac{1}{12\,345}
--hints--
integerPartitionEquations()
dovrebbe restituire 44043947822
.
assert.strictEqual(integerPartitionEquations(), 44043947822);
--seed--
--seed-contents--
function integerPartitionEquations() {
return true;
}
integerPartitionEquations();
--solutions--
// solution required