Files
2022-04-01 02:01:59 +09:00

1.8 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4ab1000cf542c50ffbd Problema 318: 2011 nove 5 301974 problem-318-2011-nines

--description--

Considera il numero reale \sqrt{2} + \sqrt{3}.

Quando calcoliamo le potenze pari di \sqrt{2} + \sqrt{3} troviamo:

$$\begin{align} & {(\sqrt{2} + \sqrt{3})}^2 = 9.898979485566356\ldots \\ & {(\sqrt{2} + \sqrt{3})}^4 = 97.98979485566356\ldots \\ & {(\sqrt{2} + \sqrt{3})}^6 = 969.998969071069263\ldots \\ & {(\sqrt{2} + \sqrt{3})}^8 = 9601.99989585502907\ldots \\ & {(\sqrt{2} + \sqrt{3})}^{10} = 95049.999989479221\ldots \\ & {(\sqrt{2} + \sqrt{3})}^{12} = 940897.9999989371855\ldots \\ & {(\sqrt{2} + \sqrt{3})}^{14} = 9313929.99999989263\ldots \\ & {(\sqrt{2} + \sqrt{3})}^{16} = 92198401.99999998915\ldots \\ \end{align}$$

Sembra che il numero di nove consecutivi all'inizio della parte frazionaria di queste potenze non diminuisca. In realtà si può dimostrare che la parte frazionaria di {(\sqrt{2} + \sqrt{3})}^{2n} si avvicina 1 per n di grandi dimensioni.

Considera tutti i numeri reali del modulo \sqrt{p} + \sqrt{q} con p e q interi positivi e p < q, tali che la parte frazionaria di {(\sqrt{p} + \sqrt{q})}^{2n} si avvicina 1 per n di grandi dimensioni.

Sia C(p,q,n) il numero di nove consecutivi all'inizio della parte frazionaria di {(\sqrt{p} + \sqrt{q})}^{2n}.

Sia N(p,q) il valore minimo di n tale che C(p,q,n) ≥ 2011.

Trova \sum N(p,q) per p + q ≤ 2011.

--hints--

twoThousandElevenNines() dovrebbe restituire 709313889.

assert.strictEqual(twoThousandElevenNines(), 709313889);

--seed--

--seed-contents--

function twoThousandElevenNines() {

  return true;
}

twoThousandElevenNines();

--solutions--

// solution required