Files
freeCodeCamp/curriculum/challenges/italian/10-coding-interview-prep/project-euler/problem-320-factorials-divisible-by-a-huge-integer.md
2022-03-01 21:39:26 +05:30

45 lines
795 B
Markdown

---
id: 5900f4ae1000cf542c50ffbf
title: 'Problema 320: Fattoriali divisibili da un numero intero enorme'
challengeType: 5
forumTopicId: 301977
dashedName: problem-320-factorials-divisible-by-a-huge-integer
---
# --description--
Sia $N(i)$ sia il più piccolo numero intero $n$ tale che $n!$ sia divisibile per $(i!)^{1234567890}$
Sia $S(u) = \sum N(i)$ per $10 ≤ i ≤ u$.
$S(1000)=614\\,538\\,266\\,565\\,663$.
Trova $S(1\\,000\\,000)\bmod {10}^{18}$.
# --hints--
`divisibleByHugeInteger()` dovrebbe restituire `278157919195482660`.
```js
assert.strictEqual(divisibleByHugeInteger(), 278157919195482660);
```
# --seed--
## --seed-contents--
```js
function divisibleByHugeInteger() {
return true;
}
divisibleByHugeInteger();
```
# --solutions--
```js
// solution required
```