47 lines
1.0 KiB
Markdown
47 lines
1.0 KiB
Markdown
---
|
|
id: 5900f5071000cf542c510018
|
|
title: 'Problema 410: Cerchio e retta tangente'
|
|
challengeType: 5
|
|
forumTopicId: 302079
|
|
dashedName: problem-410-circle-and-tangent-line
|
|
---
|
|
|
|
# --description--
|
|
|
|
Sia $C$ il cerchio con raggio $r$, $x^2 + y^2 = r^2$. Scegliamo due punti, $P(a, b)$ e $Q(-a, c)$ affinché la retta che passa per $P$ e $Q$ è tangente a $C$.
|
|
|
|
Per esempio, il quartetto $(r, a, b, c) = (2, 6, 2, -7)$ soddisfa questa proprietà.
|
|
|
|
Sia $F(R, X)$ il numero di quartetti di numeri interi $(r, a, b, c)$ con questa proprietà e con 0 < r ≤ R$ e $0 < a ≤ X$.
|
|
|
|
Possiamo verificare che $F(1, 5) = 10$, $F(2, 10) = 52$ e $F(10, 100) = 3384$.
|
|
|
|
Trova $F({10}^8, {10}^9) + F({10}^9, {10}^8)$.
|
|
|
|
# --hints--
|
|
|
|
`circleAndTangentLine()` dovrebbe restituire `799999783589946600`.
|
|
|
|
```js
|
|
assert.strictEqual(circleAndTangentLine(), 799999783589946600);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function circleAndTangentLine() {
|
|
|
|
return true;
|
|
}
|
|
|
|
circleAndTangentLine();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|