Files
2022-01-20 20:30:18 +01:00

9.1 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5e6decd8ec8d7db960950d1c LU 分解 5 385280 lu-decomposition

--description--

[LU 分解](https://en.wikipedia.org/wiki/LU decomposition) で説明されているように、すべての正方行列 A は、下三角行列 L と上三角行列 U の積に分解できます。

A = LU

これはガウスの消去法の修正版です。

[コレスキー分解](http://rosettacode.org/wiki/Cholesky decomposition) が正定値対称行列に対してのみ機能するのに対し、より一般的な LU 分解は任意の正方行列に対して機能します。

LU を計算するためのアルゴリズムはいくつかあります。

3x3 の例について クラウト法 を導き出すには、次の系を解く必要があります。

\begin{align}A = \begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{pmatrix}= \begin{pmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33}\\ \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} = LU\end{align}

次に、未知数 12 個を持つ 9つの方程式を解かなければなりません。 系を一意に解決できるようにするために、通常 L の対角要素を 1 に設定します。

l\_{11}=1

l\_{22}=1

l\_{33}=1

これで、9 つの未知数と 9 つの方程式を解くことができます。

\begin{align}A = \begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1\\ \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ u_{11}l_{21} & u_{12}l_{21}+u_{22} & u_{13}l_{21}+u_{23} \\ u_{11}l_{31} & u_{12}l_{31}+u_{22}l_{32} & u_{13}l_{31} + u_{23}l_{32}+u_{33} \end{pmatrix} = LU\end{align}

他の lu を解くと、次の式が得られます。

u\_{11}=a\_{11}

u\_{12}=a\_{12}

u\_{13}=a\_{13}

u\_{22}=a\_{22} - u\_{12}l\_{21}

u\_{23}=a\_{23} - u\_{13}l\_{21}

u\_{33}=a\_{33} - (u\_{13}l\_{31} + u\_{23}l\_{32})

l については、次のとおりです。

l\_{21}=\\frac{1}{u\_{11}} a\_{21}

l\_{31}=\\frac{1}{u\_{11}} a\_{31}

l\_{32}=\\frac{1}{u\_{22}} (a\_{32} - u\_{12}l\_{31})

以下の式として表現できる計算パターンがあることがわかります。まず U の場合、

u\_{ij} = a\_{ij} - \\sum\_{k=1}^{i-1} u\_{kj}l\_{ik}

そして L の場合、

l\_{ij} = \\frac{1}{u\_{jj}} (a\_{ij} - \\sum\_{k=1}^{j-1} u\_{kj}l\_{ik})

2 番目の式で、対角線より下の l\_{ij} を取得するには、対角要素 (ピボット) u\_{jj} で除算する必要があるため、u\_{jj} が 0 または非常に小さい時、数値が不安定になり、問題が発生します。

この問題の解決策が、ピボット選択 A です。これは、LU 分解の前に A の行を再配置することを意味します。これにより、各列の最大要素が $A$の対角要素となります。 行を並べ替えることで、 A に 置換行列 P をかけることになります。

PA \\Rightarrow A'

例:

\begin{align} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \end{align}

次に、再配置された行列に分解アルゴリズムが適用され、以下のようになります。

PA = LU

--instructions--

タスクは、nxn の正方行列 A を取り、下三角行列 $L$、上三角行列 $U$、および置換行列 P を返すルーチンを実装して、上記の式が満たされるようにすることです。 戻り値は、 [L, U, P] の形式でなければなりません。

--hints--

luDecomposition は関数とします。

assert(typeof luDecomposition == 'function');

luDecomposition([[1, 3, 5], [2, 4, 7], [1, 1, 0]]) は配列を返す必要があります。

assert(
  Array.isArray(
    luDecomposition([
      [1, 3, 5],
      [2, 4, 7],
      [1, 1, 0]
    ])
  )
);

luDecomposition([[1, 3, 5], [2, 4, 7], [1, 1, 0]])[[[1, 0, 0], [0.5, 1, 0], [0.5, -1, 1]], [[2, 4, 7], [0, 1, 1.5], [0, 0, -2]], [[0, 1, 0], [1, 0, 0], [0, 0, 1]]] を返す必要があります。

assert.deepEqual(
  luDecomposition([
    [1, 3, 5],
    [2, 4, 7],
    [1, 1, 0]
  ]),
  [
    [
      [1, 0, 0],
      [0.5, 1, 0],
      [0.5, -1, 1]
    ],
    [
      [2, 4, 7],
      [0, 1, 1.5],
      [0, 0, -2]
    ],
    [
      [0, 1, 0],
      [1, 0, 0],
      [0, 0, 1]
    ]
  ]
);

luDecomposition([[11, 9, 24, 2], [1, 5, 2, 6], [3, 17, 18, 1], [2, 5, 7, 1]])[[[1, 0, 0, 0], [0.2727272727272727, 1, 0, 0], [0.09090909090909091, 0.2875, 1, 0], [0.18181818181818182, 0.23124999999999996, 0.0035971223021580693, 1]], [[11, 9, 24, 2], [0, 14.545454545454547, 11.454545454545455, 0.4545454545454546], [0, 0, -3.4749999999999996, 5.6875], [0, 0, 0, 0.510791366906476]], [[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]] を返す必要があります。

assert.deepEqual(
  luDecomposition([
    [11, 9, 24, 2],
    [1, 5, 2, 6],
    [3, 17, 18, 1],
    [2, 5, 7, 1]
  ]),
  [
    [
      [1, 0, 0, 0],
      [0.2727272727272727, 1, 0, 0],
      [0.09090909090909091, 0.2875, 1, 0],
      [0.18181818181818182, 0.23124999999999996, 0.0035971223021580693, 1]
    ],
    [
      [11, 9, 24, 2],
      [0, 14.545454545454547, 11.454545454545455, 0.4545454545454546],
      [0, 0, -3.4749999999999996, 5.6875],
      [0, 0, 0, 0.510791366906476]
    ],
    [
      [1, 0, 0, 0],
      [0, 0, 1, 0],
      [0, 1, 0, 0],
      [0, 0, 0, 1]
    ]
  ]
);

luDecomposition([[1, 1, 1], [4, 3, -1], [3, 5, 3]])[[[1, 0, 0], [0.75, 1, 0], [0.25, 0.09090909090909091, 1]], [[4, 3, -1], [0, 2.75, 3.75], [0, 0, 0.9090909090909091]], [[0, 1, 0], [0, 0, 1], [1, 0, 0]]] を返す必要があります。

assert.deepEqual(
  luDecomposition([
    [1, 1, 1],
    [4, 3, -1],
    [3, 5, 3]
  ]),
  [
    [
      [1, 0, 0],
      [0.75, 1, 0],
      [0.25, 0.09090909090909091, 1]
    ],
    [
      [4, 3, -1],
      [0, 2.75, 3.75],
      [0, 0, 0.9090909090909091]
    ],
    [
      [0, 1, 0],
      [0, 0, 1],
      [1, 0, 0]
    ]
  ]
);

luDecomposition([[1, -2, 3], [2, -5, 12], [0, 2, -10]])[[[1, 0, 0], [0, 1, 0], [0.5, 0.25, 1]], [[2, -5, 12], [0, 2, -10], [0, 0, -0.5]], [[0, 1, 0], [0, 0, 1], [1, 0, 0]]] を返す必要があります。

assert.deepEqual(
  luDecomposition([
    [1, -2, 3],
    [2, -5, 12],
    [0, 2, -10]
  ]),
  [
    [
      [1, 0, 0],
      [0, 1, 0],
      [0.5, 0.25, 1]
    ],
    [
      [2, -5, 12],
      [0, 2, -10],
      [0, 0, -0.5]
    ],
    [
      [0, 1, 0],
      [0, 0, 1],
      [1, 0, 0]
    ]
  ]
);

--seed--

--seed-contents--

function luDecomposition(A) {

}

--solutions--

function luDecomposition(A) {

    function dotProduct(a, b) {
        var sum = 0;
        for (var i = 0; i < a.length; i++)
            sum += a[i] * b[i]
        return sum;
    }

    function matrixMul(A, B) {
        var result = new Array(A.length);
        for (var i = 0; i < A.length; i++)
            result[i] = new Array(B[0].length)
        var aux = new Array(B.length);

        for (var j = 0; j < B[0].length; j++) {

            for (var k = 0; k < B.length; k++)
                aux[k] = B[k][j];

            for (var i = 0; i < A.length; i++)
                result[i][j] = dotProduct(A[i], aux);
        }
        return result;
    }

    function pivotize(m) {
        var n = m.length;
        var id = new Array(n);
        for (var i = 0; i < n; i++) {
            id[i] = new Array(n);
            id[i].fill(0)
            id[i][i] = 1;
        }

        for (var i = 0; i < n; i++) {
            var maxm = m[i][i];
            var row = i;
            for (var j = i; j < n; j++)
                if (m[j][i] > maxm) {
                    maxm = m[j][i];
                    row = j;
                }

            if (i != row) {
                var tmp = id[i];
                id[i] = id[row];
                id[row] = tmp;
            }
        }
        return id;
    }

    var n = A.length;
    var L = new Array(n);
    for (var i = 0; i < n; i++) { L[i] = new Array(n); L[i].fill(0) }
    var U = new Array(n);
    for (var i = 0; i < n; i++) { U[i] = new Array(n); U[i].fill(0) }
    var P = pivotize(A);
    var A2 = matrixMul(P, A);

    for (var j = 0; j < n; j++) {
        L[j][j] = 1;
        for (var i = 0; i < j + 1; i++) {
            var s1 = 0;
            for (var k = 0; k < i; k++)
                s1 += U[k][j] * L[i][k];
            U[i][j] = A2[i][j] - s1;
        }
        for (var i = j; i < n; i++) {
            var s2 = 0;
            for (var k = 0; k < j; k++)
                s2 += U[k][j] * L[i][k];
            L[i][j] = (A2[i][j] - s2) / U[j][j];
        }
    }
    return [L, U, P];
}