72 lines
1.6 KiB
Markdown
72 lines
1.6 KiB
Markdown
---
|
|
id: 5900f4751000cf542c50ff87
|
|
title: 'Problema 264: Centros dos triângulos'
|
|
challengeType: 5
|
|
forumTopicId: 301913
|
|
dashedName: problem-264-triangle-centres
|
|
---
|
|
|
|
# --description--
|
|
|
|
Considere todos os triângulos que têm:
|
|
|
|
- Todos os seus vértices em pontos da rede.
|
|
- Circuncentro na origem O.
|
|
- Ortocentro no ponto H(5, 0).
|
|
|
|
Há nove triângulos desse tipo tendo um $\text{perímetro} ≤ 50$.
|
|
|
|
Listados e mostrados em ordem ascendente de perímetro, eles são:
|
|
|
|
<table>
|
|
<tbody>
|
|
<tr>
|
|
<td>
|
|
A(-4, 3), B(5, 0), C(4, -3)<br>
|
|
A(4, 3), B(5, 0), C(-4, -3)<br>
|
|
A(-3, 4), B(5, 0), C(3, -4)<br>
|
|
<br><br>
|
|
A(3, 4), B(5, 0), C(-3, -4)<br>
|
|
A(0, 5), B(5, 0), C(0, -5)<br>
|
|
A(1, 8), B(8, -1), C(-4, -7)<br>
|
|
<br><br>
|
|
A(8, 1), B(1, -8), C(-4, 7)<br>
|
|
A(2, 9), B(9, -2), C(-6, -7)<br>
|
|
A(9, 2), B(2, -9), C(-6, 7)<br>
|
|
</td>
|
|
<td><img class="img-responsive center-block" alt="nove triângulos ABC com o perímetro ≤ 50" src="https://cdn.freecodecamp.org/curriculum/project-euler/triangle-centres.gif" style="background-color: white; padding: 10px;"></td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
|
|
A soma dos seus perímetros, arredondada para quatro casas decimais, é 291,0089.
|
|
|
|
Encontre todos os triângulos desse tipo com um $\text{perímetro} ≤ {10}^5$. Insira como resposta a soma dos seus perímetros, arredondada para quatro casas decimais.
|
|
|
|
# --hints--
|
|
|
|
`triangleCentres()` deve retornar `2816417.1055`.
|
|
|
|
```js
|
|
assert.strictEqual(triangleCentres(), 2816417.1055);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function triangleCentres() {
|
|
|
|
return true;
|
|
}
|
|
|
|
triangleCentres();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|