Files
2022-04-11 19:34:39 +05:30

65 lines
3.4 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f4111000cf542c50ff24
title: 'Задача 165: Перетини'
challengeType: 5
forumTopicId: 301799
dashedName: problem-165-intersections
---
# --description--
Сегмент визначається лише двома кінцевими точками. Розглядаючи два відрізки лінії у планіметрії є три можливості: сегменти мають нуль точок, одну точку або нескінченно багато спільних точок.
Крім того, коли два відрізки мають лише одну спільну точку, це може бути той випадок, коли спільною точкою є кінцева точка або одного з окремих сегментів, або обох. Якщо спільна точка двох сегментів не є кінцевою точкою будь-якого із сегментів, то це внутрішня точка обох сегментів.
Ми назвемо спільну точку $T$ двох відрізків $L_1$ і $L_2$ справжньою точкою перетину $L_1$ і $L_2$, якщо $T$ є єдиною спільною точкою $L_1$ і $L_2$ і $T$ є внутрішньою точкою обох відрізків.
Розглянемо три сегменти $L_1$, $L_2$та $L_3$:
$\begin{align} & L_1: (27, 44) \\;\text{to}\\; (12, 32) \\\\
& L_2: (46, 53) \\;\tтекст{to}\\; (17, 62) \\\\ & L_3: (46, 70) \\;\tтекст{to}\\; (22, 40) \\\\
\end{align}$$
Можна перевірити, що відрізки ліній $L_2$ і $L_3$ мають справжню точку перетину. Ми зазначали, що, якщо одна з кінцевих точок $L_3$: (22, 40) лежить на $L_1$, це не вважається справжньою точкою перетину. $L_1$ і $L_2$ не мають спільної точки. Отже, на трьох відрізках прямої ми знаходимо одну справжню точку перетину.
Тепер зробімо те саме для 5000 прямих відрізків. З цією метою ми згенеруємо 20000 чисел, використовуючи так званий генератор псевдо-випадкових чисел «Blum Blum Shub».
$\begin{align} & s_0 = 290797 \\\\
& s_{n + 1} = s_n × s_n (\text{modulo}\\; 50515093) \\\\ & t_n = s_n (\text{modulo}\\; 500) \\\\
\end{align}$
Щоб створити кожен відрізок, ми використовуємо чотири послідовних числа $t_n$. Тобто перший відрізок дано:
($_t$1, $t_2$) до ($t_3$, $t_4$)
Перші чотири числа вичислені згідно зі згаданим генератором, мають бути: 27, 144, 12 та 232. Перший відрізок, таким чином, буде (27, 144) до (12, 232).
Скільки окремих точок перетину буде знайдено серед 5000 відрізків прямих ліній?
# --hints--
`distinctIntersections()` має повертати `2868868`.
```js
assert.strictEqual(distinctIntersections(), 2868868);
```
# --seed--
## --seed-contents--
```js
function distinctIntersections() {
return true;
}
distinctIntersections();
```
# --solutions--
```js
// solution required
```