Files
freeCodeCamp/curriculum/challenges/ukrainian/10-coding-interview-prep/project-euler/problem-180-rational-zeros-of-a-function-of-three-variables.md
2022-04-11 19:34:39 +05:30

54 lines
1.7 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f4201000cf542c50ff33
title: 'Завдання 180: Раціональні нулі функції з трьома змінними'
challengeType: 5
forumTopicId: 301816
dashedName: problem-180-rational-zeros-of-a-function-of-three-variables
---
# --description--
Для будь-якого цілого числа $n$ розглянемо три функції
$$\begin{align} & f_{1,n}(x,y,z) = x^{n + 1} + y^{n + 1} z^{n + 1}\\\\
& f_{2,n}(x,y,z) = (xy + yz + zx) \times (x^{n - 1} + y^{n - 1} z^{n - 1})\\\\ & f_{3,n}(x,y,z) = xyz \times (x^{n - 2} + y^{n - 2} z^{n - 2}) \end{align}$$
та їхню комбінацію
$$\begin{align} & f_n(x,y,z) = f_{1,n}(x,y,z) + f_{2,n}(x,y,z) f_{3,n}(x,y,z) \end{align}$$
$(x,y,z)$ ми називаємо золотою трійкою послідовності $k$, якщо $x$, $y$ і $z$ є раціональними числами форми $\frac{a}{b}$ with $0 < a < b ≤ k$ і є хоча б одне ціле число $n$, щоб виконувалася рівність $f_n(x,y,z) = 0$.
Нехай $s(x,y,z) = x + y + z$.
Нехай $t = \frac{u}{v}$ є сумою всіх різних $s(x,y,z)$ для золотих трійок $(x,y,z)$ послідовності 35. Всі $s(x,y,z)$ і $t$ повинні бути в скороченій формі.
Знайдіть $u + v$.
# --hints--
`rationalZeros()` повинен повернутися як `285196020571078980`.
```js
assert.strictEqual(rationalZeros(), 285196020571078980);
```
# --seed--
## --seed-contents--
```js
function rationalZeros() {
return true;
}
rationalZeros();
```
# --solutions--
```js
// solution required
```