1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4b21000cf542c50ffc5 | Завдання 326: Суми модулів | 5 | 301983 | problem-326-modulo-summations |
--description--
Нехай an – це послідовність, рекурсивно визначена за допомогою: a_1 = 1
, \displaystyle a_n = \left(\sum_{k = 1}^{n - 1} k \times a_k\right)\bmod n
.
Тож першими 10 елементами a_n
є: 1, 1, 0, 3, 0, 3, 5, 4, 1, 9.
Нехай f(N, M)
представляє кількість пар (p, q)
, таких, що:
1 \le p \le q \le N \\; \text{and} \\; \left(\sum_{i = p}^q a_i\right)\bmod M = 0
Можна помітити, що f(10, 10) = 4
з парами (3,3), (5,5), (7,9) і (9,10).
Також дано, що f({10}^4, {10}^3) = 97\\,158
.
Знайдіть f({10}^{12}, {10}^6)
.
--hints--
moduloSummations()
має повернути 1966666166408794400
.
assert.strictEqual(moduloSummations(), 1966666166408794400);
--seed--
--seed-contents--
function moduloSummations() {
return true;
}
moduloSummations();
--solutions--
// solution required