55 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			55 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						||
id: 5900f3f51000cf542c50ff08
 | 
						||
title: 'Problem 137: Fibonacci golden nuggets'
 | 
						||
challengeType: 5
 | 
						||
forumTopicId: 301765
 | 
						||
dashedName: problem-137-fibonacci-golden-nuggets
 | 
						||
---
 | 
						||
 | 
						||
# --description--
 | 
						||
 | 
						||
Consider the infinite polynomial series AF(x) = xF1 + x2F2 + x3F3 + ..., where Fk is the kth term in the Fibonacci sequence: 1, 1, 2, 3, 5, 8, ... ; that is, Fk = Fk−1 + Fk−2, F1 = 1 and F2 = 1.
 | 
						||
 | 
						||
For this problem we shall be interested in values of x for which AF(x) is a positive integer.
 | 
						||
 | 
						||
Surprisingly AF(1/2)
 | 
						||
 | 
						||
=
 | 
						||
 | 
						||
(1/2).1 + (1/2)2.1 + (1/2)3.2 + (1/2)4.3 + (1/2)5.5 + ...
 | 
						||
 | 
						||
= 1/2 + 1/4 + 2/8 + 3/16 + 5/32 + ...
 | 
						||
 | 
						||
= 2 The corresponding values of x for the first five natural numbers are shown below.
 | 
						||
 | 
						||
xAF(x) √2−11 1/22 (√13−2)/33 (√89−5)/84 (√34−3)/55
 | 
						||
 | 
						||
We shall call AF(x) a golden nugget if x is rational, because they become increasingly rarer; for example, the 10th golden nugget is 74049690. Find the 15th golden nugget.
 | 
						||
 | 
						||
# --hints--
 | 
						||
 | 
						||
`euler137()` should return 1120149658760.
 | 
						||
 | 
						||
```js
 | 
						||
assert.strictEqual(euler137(), 1120149658760);
 | 
						||
```
 | 
						||
 | 
						||
# --seed--
 | 
						||
 | 
						||
## --seed-contents--
 | 
						||
 | 
						||
```js
 | 
						||
function euler137() {
 | 
						||
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
euler137();
 | 
						||
```
 | 
						||
 | 
						||
# --solutions--
 | 
						||
 | 
						||
```js
 | 
						||
// solution required
 | 
						||
```
 |