* fix: clean-up Project Euler 121-140 * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: missing backticks Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing delimiter Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.3 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f3ee1000cf542c50ff00 | Problem 130: Composites with prime repunit property | 5 | 301758 | problem-130-composites-with-prime-repunit-property |
--description--
A number consisting entirely of ones is called a repunit. We shall define R(k) to be a repunit of length k; for example, R(6) = 111111.
Given that n is a positive integer and GCD(n, 10) = 1, it can be shown that there always exists a value, k, for which R(k) is divisible by n, and let A(n) be the least such value of k; for example, A(7) = 6 and A(41) = 5.
You are given that for all primes, p > 5, that p − 1 is divisible by A(p). For example, when p = 41, A(41) = 5, and 40 is divisible by 5.
However, there are rare composite values for which this is also true; the first five examples being 91, 259, 451, 481, and 703.
Find the sum of the first twenty-five composite values of n for which GCD(n, 10) = 1 and n − 1 is divisible by A(n).
--hints--
compositeRepunit() should return 149253.
assert.strictEqual(compositeRepunit(), 149253);
--seed--
--seed-contents--
function compositeRepunit() {
return true;
}
compositeRepunit();
--solutions--
// solution required