Files
freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-73-counting-fractions-in-a-range.md
miyaliu666 9770cd0f81 translated some Chinese curriculum files (#40531)
* translate task #1 - #4

* add translation of zhang-suen-thinning and markov algorithm

Co-authored-by: S1ngS1ng <liuxing0514@gmail.com>
2021-01-08 11:59:18 -07:00

52 lines
1.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
---
id: 5900f3b61000cf542c50fec8
title: '关卡 73区间内的分数个数'
challengeType: 5
forumTopicId: 302186
---
# --description--
考虑形如 `n`/`d` 的分数,其中 n 和 d 均为正整数。如果 `n`&lt;`d`,且其最大公约数 HCF(`n`,`d`)=1则该分数被称为最简真分数。
如果我们将 `d` ≤ 8 的最简真分数构成的集合按大小升序列出,将得到:
<div style='text-align: center;'>1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, <strong>3/8</strong>, <strong>2/5</strong>, <strong>3/7</strong>, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8</div>
可以看出在 1/3 和 1/2 之间有3个分数。
`d` ≤ 12,000 的最简真分数构成的集合排序后,在 1/3 和 1/2 之间有多少个分数?
# --hints--
`countingFractionsInARange()` 应该返回一个数字。
```js
assert(typeof countingFractionsInARange() === 'number');
```
`countingFractionsInARange()` 应该返回 7295372。
```js
assert.strictEqual(countingFractionsInARange(), 7295372);
```
# --seed--
## --seed-contents--
```js
function countingFractionsInARange() {
return true;
}
countingFractionsInARange();
```
# --solutions--
```js
// solution required
```