2.9 KiB
2.9 KiB
title, id, challengeType
title | id | challengeType |
---|---|---|
Gamma function | 5a23c84252665b21eecc7e76 | 5 |
Description
$\Gamma(x) = \displaystyle\int_0^\infty t^{x-1}e^{-t} dt$
Instructions
Tests
tests:
- text: <code>gamma</code> should be a function.
testString: 'assert(typeof gamma==''function'',''<code>gamma</code> should be a function.'')'
- text: '<code>gamma(''+tests[0]+'')</code> should return a number.'
testString: 'assert(typeof gamma(tests[0])==''number'',''<code>gamma(''+tests[0]+'')</code> should return a number.'')'
- text: '<code>gamma(''+tests[0]+'')</code> should return <code>''+results[0]+''</code>.'
testString: 'assert.equal(gamma(tests[0]),results[0],''<code>gamma(''+tests[0]+'')</code> should return <code>''+results[0]+''</code>.'')'
- text: '<code>gamma(''+tests[1]+'')</code> should return <code>''+results[1]+''</code>.'
testString: 'assert.equal(gamma(tests[1]),results[1],''<code>gamma(''+tests[1]+'')</code> should return <code>''+results[1]+''</code>.'')'
- text: '<code>gamma(''+tests[2]+'')</code> should return <code>''+results[2]+''</code>.'
testString: 'assert.equal(gamma(tests[2]),results[2],''<code>gamma(''+tests[2]+'')</code> should return <code>''+results[2]+''</code>.'')'
- text: '<code>gamma(''+tests[3]+'')</code> should return <code>''+results[3]+''</code>.'
testString: 'assert.equal(gamma(tests[3]),results[3],''<code>gamma(''+tests[3]+'')</code> should return <code>''+results[3]+''</code>.'')'
- text: '<code>gamma(''+tests[4]+'')</code> should return <code>''+results[4]+''</code>.'
testString: 'assert.equal(gamma(tests[4]),results[4],''<code>gamma(''+tests[4]+'')</code> should return <code>''+results[4]+''</code>.'')'
Challenge Seed
function gamma (x) {
// Good luck!
}
After Test
console.info('after the test');
Solution
function gamma(x) {
var p = [0.99999999999980993, 676.5203681218851, -1259.1392167224028,
771.32342877765313, -176.61502916214059, 12.507343278686905,
-0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7
];
var g = 7;
if (x < 0.5) {
return Math.PI / (Math.sin(Math.PI * x) * gamma(1 - x));
}
x -= 1;
var a = p[0];
var t = x + g + 0.5;
for (var i = 1; i < p.length; i++) {
a += p[i] / (x + i);
}
var result=Math.sqrt(2 * Math.PI) * Math.pow(t, x + 0.5) * Math.exp(-t) * a;
return result;
}