* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
		
			
				
	
	
		
			47 lines
		
	
	
		
			886 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			47 lines
		
	
	
		
			886 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f49d1000cf542c50ffb0
 | |
| title: 'Problem 305: Reflexive Position'
 | |
| challengeType: 5
 | |
| forumTopicId: 301959
 | |
| dashedName: problem-305-reflexive-position
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Let's call S the (infinite) string that is made by concatenating the consecutive positive integers (starting from 1) written down in base 10.
 | |
| 
 | |
| Thus, S = 1234567891011121314151617181920212223242...
 | |
| 
 | |
| It's easy to see that any number will show up an infinite number of times in S.
 | |
| 
 | |
| Let's call f(n) the starting position of the nth occurrence of n in S. For example, f(1)=1, f(5)=81, f(12)=271 and f(7780)=111111365.
 | |
| 
 | |
| Find ∑f(3k) for 1≤k≤13.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `euler305()` should return 18174995535140.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(euler305(), 18174995535140);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function euler305() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| euler305();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |