Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

5.4 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
587d825c367417b2b2512c90 广度优先搜索 1 breadth-first-search

--description--

到目前为止,我们已经学会了创建图表表示的不同方法。现在怎么办?一个自然的问题是图中任何两个节点之间的距离是多少?输入图遍历算法遍历算法是遍历或访问图中节点的算法。一种遍历算法是广度优先搜索算法。该算法从一个节点开始,首先访问一个边缘的所有邻居,然后继续访问它们的每个邻居。在视觉上,这就是算法正在做的事情。 广度优先搜索算法遍历要实现此算法,您需要输入图形结构和要启动的节点。首先,您需要了解距起始节点的距离。这个你想要开始你所有的距离最初一些大的数字,如Infinity 。这为从起始节点无法访问节点的情况提供了参考。接下来,您将要从开始节点转到其邻居。这些邻居是一个边缘,此时你应该添加一个距离单位到你要跟踪的距离。最后,有助于实现广度优先搜索算法的重要数据结构是队列。这是一个数组,您可以在其中添加元素到一端并从另一端删除元素。这也称为FIFO先进先出数据结构。

--instructions--

编写一个函数bfs() ,它将邻接矩阵图(二维数组)和节点标签根作为参数。节点标签只是0n - 1之间节点的整数值,其中n是图中节点的总数。您的函数将输出JavaScript对象键值对与节点及其与根的距离。如果无法到达节点则其距离应为Infinity

--hints--

输入图[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]] ,起始节点为1应该返回{0: 1, 1: 0, 2: 1, 3: 2}

assert(
  (function () {
    var graph = [
      [0, 1, 0, 0],
      [1, 0, 1, 0],
      [0, 1, 0, 1],
      [0, 0, 1, 0]
    ];
    var results = bfs(graph, 1);
    return isEquivalent(results, { 0: 1, 1: 0, 2: 1, 3: 2 });
  })()
);

输入图[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]] ,起始节点为1应该返回{0: 1, 1: 0, 2: 1, 3: Infinity}

assert(
  (function () {
    var graph = [
      [0, 1, 0, 0],
      [1, 0, 1, 0],
      [0, 1, 0, 0],
      [0, 0, 0, 0]
    ];
    var results = bfs(graph, 1);
    return isEquivalent(results, { 0: 1, 1: 0, 2: 1, 3: Infinity });
  })()
);

输入图[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]] ,起始节点为0应该返回{0: 0, 1: 1, 2: 2, 3: 3}

assert(
  (function () {
    var graph = [
      [0, 1, 0, 0],
      [1, 0, 1, 0],
      [0, 1, 0, 1],
      [0, 0, 1, 0]
    ];
    var results = bfs(graph, 0);
    return isEquivalent(results, { 0: 0, 1: 1, 2: 2, 3: 3 });
  })()
);

起始节点为0的输入图[[0, 1], [1, 0]]应返回{0: 0, 1: 1}

assert(
  (function () {
    var graph = [
      [0, 1],
      [1, 0]
    ];
    var results = bfs(graph, 0);
    return isEquivalent(results, { 0: 0, 1: 1 });
  })()
);

--seed--

--after-user-code--

// Source: http://adripofjavascript.com/blog/drips/object-equality-in-javascript.html
function isEquivalent(a, b) {
    // Create arrays of property names
    var aProps = Object.getOwnPropertyNames(a);
    var bProps = Object.getOwnPropertyNames(b);
    // If number of properties is different,
    // objects are not equivalent
    if (aProps.length != bProps.length) {
        return false;
    }
    for (var i = 0; i < aProps.length; i++) {
        var propName = aProps[i];
        // If values of same property are not equal,
        // objects are not equivalent
        if (a[propName] !== b[propName]) {
            return false;
        }
    }
    // If we made it this far, objects
    // are considered equivalent
    return true;
}

--seed-contents--

function bfs(graph, root) {
  var nodesLen = {};

  return nodesLen;
};

var exBFSGraph = [
  [0, 1, 0, 0],
  [1, 0, 1, 0],
  [0, 1, 0, 1],
  [0, 0, 1, 0]
];
console.log(bfs(exBFSGraph, 3));

--solutions--

function bfs(graph, root) {
  var nodesLen = {};
  // Set all distances to infinity
  for (var i = 0; i < graph.length; i++) {
    nodesLen[i] = Infinity;
  }
  nodesLen[root] = 0; // ...except root node
  var queue = [root]; // Keep track of nodes to visit
  var current; // Current node traversing
  // Keep on going until no more nodes to traverse
  while (queue.length !== 0) {
    current = queue.shift();
    // Get adjacent nodes from current node
    var curConnected = graph[current]; // Get layer of edges from current
    var neighborIdx = []; // List of nodes with edges
    var idx = curConnected.indexOf(1); // Get first edge connection
    while (idx !== -1) {
      neighborIdx.push(idx); // Add to list of neighbors
      idx = curConnected.indexOf(1, idx + 1); // Keep on searching
    }
    // Loop through neighbors and get lengths
    for (var j = 0; j < neighborIdx.length; j++) {
      // Increment distance for nodes traversed
      if (nodesLen[neighborIdx[j]] === Infinity) {
        nodesLen[neighborIdx[j]] = nodesLen[current] + 1;
        queue.push(neighborIdx[j]); // Add new neighbors to queue
      }
    }
  }
  return nodesLen;
}