* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
167 lines
5.4 KiB
Markdown
167 lines
5.4 KiB
Markdown
---
|
||
id: 587d825c367417b2b2512c90
|
||
title: 广度优先搜索
|
||
challengeType: 1
|
||
videoUrl: ''
|
||
dashedName: breadth-first-search
|
||
---
|
||
|
||
# --description--
|
||
|
||
到目前为止,我们已经学会了创建图表表示的不同方法。现在怎么办?一个自然的问题是图中任何两个节点之间的距离是多少?输入<dfn>图遍历算法</dfn> 。 <dfn>遍历算法</dfn>是遍历或访问图中节点的算法。一种遍历算法是广度优先搜索算法。该算法从一个节点开始,首先访问一个边缘的所有邻居,然后继续访问它们的每个邻居。在视觉上,这就是算法正在做的事情。 要实现此算法,您需要输入图形结构和要启动的节点。首先,您需要了解距起始节点的距离。这个你想要开始你所有的距离最初一些大的数字,如`Infinity` 。这为从起始节点无法访问节点的情况提供了参考。接下来,您将要从开始节点转到其邻居。这些邻居是一个边缘,此时你应该添加一个距离单位到你要跟踪的距离。最后,有助于实现广度优先搜索算法的重要数据结构是队列。这是一个数组,您可以在其中添加元素到一端并从另一端删除元素。这也称为<dfn>FIFO</dfn>或<dfn>先进先出</dfn>数据结构。
|
||
|
||
# --instructions--
|
||
|
||
编写一个函数`bfs()` ,它将邻接矩阵图(二维数组)和节点标签根作为参数。节点标签只是`0`到`n - 1`之间节点的整数值,其中`n`是图中节点的总数。您的函数将输出JavaScript对象键值对与节点及其与根的距离。如果无法到达节点,则其距离应为`Infinity` 。
|
||
|
||
# --hints--
|
||
|
||
输入图`[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]` ,起始节点为`1`应该返回`{0: 1, 1: 0, 2: 1, 3: 2}`
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var graph = [
|
||
[0, 1, 0, 0],
|
||
[1, 0, 1, 0],
|
||
[0, 1, 0, 1],
|
||
[0, 0, 1, 0]
|
||
];
|
||
var results = bfs(graph, 1);
|
||
return isEquivalent(results, { 0: 1, 1: 0, 2: 1, 3: 2 });
|
||
})()
|
||
);
|
||
```
|
||
|
||
输入图`[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]]` ,起始节点为`1`应该返回`{0: 1, 1: 0, 2: 1, 3: Infinity}`
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var graph = [
|
||
[0, 1, 0, 0],
|
||
[1, 0, 1, 0],
|
||
[0, 1, 0, 0],
|
||
[0, 0, 0, 0]
|
||
];
|
||
var results = bfs(graph, 1);
|
||
return isEquivalent(results, { 0: 1, 1: 0, 2: 1, 3: Infinity });
|
||
})()
|
||
);
|
||
```
|
||
|
||
输入图`[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]` ,起始节点为`0`应该返回`{0: 0, 1: 1, 2: 2, 3: 3}`
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var graph = [
|
||
[0, 1, 0, 0],
|
||
[1, 0, 1, 0],
|
||
[0, 1, 0, 1],
|
||
[0, 0, 1, 0]
|
||
];
|
||
var results = bfs(graph, 0);
|
||
return isEquivalent(results, { 0: 0, 1: 1, 2: 2, 3: 3 });
|
||
})()
|
||
);
|
||
```
|
||
|
||
起始节点为`0`的输入图`[[0, 1], [1, 0]]`应返回`{0: 0, 1: 1}`
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var graph = [
|
||
[0, 1],
|
||
[1, 0]
|
||
];
|
||
var results = bfs(graph, 0);
|
||
return isEquivalent(results, { 0: 0, 1: 1 });
|
||
})()
|
||
);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --after-user-code--
|
||
|
||
```js
|
||
// Source: http://adripofjavascript.com/blog/drips/object-equality-in-javascript.html
|
||
function isEquivalent(a, b) {
|
||
// Create arrays of property names
|
||
var aProps = Object.getOwnPropertyNames(a);
|
||
var bProps = Object.getOwnPropertyNames(b);
|
||
// If number of properties is different,
|
||
// objects are not equivalent
|
||
if (aProps.length != bProps.length) {
|
||
return false;
|
||
}
|
||
for (var i = 0; i < aProps.length; i++) {
|
||
var propName = aProps[i];
|
||
// If values of same property are not equal,
|
||
// objects are not equivalent
|
||
if (a[propName] !== b[propName]) {
|
||
return false;
|
||
}
|
||
}
|
||
// If we made it this far, objects
|
||
// are considered equivalent
|
||
return true;
|
||
}
|
||
```
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function bfs(graph, root) {
|
||
var nodesLen = {};
|
||
|
||
return nodesLen;
|
||
};
|
||
|
||
var exBFSGraph = [
|
||
[0, 1, 0, 0],
|
||
[1, 0, 1, 0],
|
||
[0, 1, 0, 1],
|
||
[0, 0, 1, 0]
|
||
];
|
||
console.log(bfs(exBFSGraph, 3));
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
function bfs(graph, root) {
|
||
var nodesLen = {};
|
||
// Set all distances to infinity
|
||
for (var i = 0; i < graph.length; i++) {
|
||
nodesLen[i] = Infinity;
|
||
}
|
||
nodesLen[root] = 0; // ...except root node
|
||
var queue = [root]; // Keep track of nodes to visit
|
||
var current; // Current node traversing
|
||
// Keep on going until no more nodes to traverse
|
||
while (queue.length !== 0) {
|
||
current = queue.shift();
|
||
// Get adjacent nodes from current node
|
||
var curConnected = graph[current]; // Get layer of edges from current
|
||
var neighborIdx = []; // List of nodes with edges
|
||
var idx = curConnected.indexOf(1); // Get first edge connection
|
||
while (idx !== -1) {
|
||
neighborIdx.push(idx); // Add to list of neighbors
|
||
idx = curConnected.indexOf(1, idx + 1); // Keep on searching
|
||
}
|
||
// Loop through neighbors and get lengths
|
||
for (var j = 0; j < neighborIdx.length; j++) {
|
||
// Increment distance for nodes traversed
|
||
if (nodesLen[neighborIdx[j]] === Infinity) {
|
||
nodesLen[neighborIdx[j]] = nodesLen[current] + 1;
|
||
queue.push(neighborIdx[j]); // Add new neighbors to queue
|
||
}
|
||
}
|
||
}
|
||
return nodesLen;
|
||
}
|
||
```
|