* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
197 lines
4.6 KiB
Markdown
197 lines
4.6 KiB
Markdown
---
|
||
id: 587d825d367417b2b2512c96
|
||
title: 深度优先搜索
|
||
challengeType: 1
|
||
videoUrl: ''
|
||
dashedName: depth-first-search
|
||
---
|
||
|
||
# --description--
|
||
|
||
与<dfn>广度优先搜索</dfn>类似,这里我们将学习另一种称为<dfn>深度优先搜索的</dfn>图遍历算法。广度优先搜索搜索远离源节点的增量边长度,而<dfn>深度优先搜索</dfn>首先尽可能地沿着边缘路径向下<dfn>搜索</dfn> 。一旦到达路径的一端,搜索将回溯到具有未访问边缘路径的最后一个节点并继续搜索。在视觉上,这就是算法正在做的事情,其中顶部节点是搜索的起始点。
|
||
|
||
<img class='img-responsive' src='https://camo.githubusercontent.com/aaad9e39961daf34d967c616edeb50abf3bf1235/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f372f37662f44657074682d46697273742d5365617263682e676966'>
|
||
|
||
该算法的简单输出是可从给定节点到达的节点列表。因此,在实施此算法时,您需要跟踪您访问的节点。
|
||
|
||
# --instructions--
|
||
|
||
编写一个函数`dfs()` ,它将无向,邻接矩阵`graph`和节点标签`root`作为参数。节点标签将只是`0`和`n - 1`之间节点的数值,其中`n`是图中节点的总数。您的函数应输出从`root`可到达的所有节点的数组。
|
||
|
||
# --hints--
|
||
|
||
输入图`[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]` ,起始节点为`1`应返回一个数组`0` , `1` , `2` ,和`3` 。
|
||
|
||
```js
|
||
assert.sameMembers(
|
||
(function () {
|
||
var graph = [
|
||
[0, 1, 0, 0],
|
||
[1, 0, 1, 0],
|
||
[0, 1, 0, 1],
|
||
[0, 0, 1, 0]
|
||
];
|
||
return dfs(graph, 1);
|
||
})(),
|
||
[0, 1, 2, 3]
|
||
);
|
||
```
|
||
|
||
输入图`[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]` ,起始节点为`1`应该返回一个包含四个元素的数组。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var graph = [
|
||
[0, 1, 0, 0],
|
||
[1, 0, 1, 0],
|
||
[0, 1, 0, 1],
|
||
[0, 0, 1, 0]
|
||
];
|
||
return dfs(graph, 1);
|
||
})().length === 4
|
||
);
|
||
```
|
||
|
||
输入图`[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]]` ,起始节点为`3`应该返回一个`3`的数组。
|
||
|
||
```js
|
||
assert.sameMembers(
|
||
(function () {
|
||
var graph = [
|
||
[0, 1, 0, 0],
|
||
[1, 0, 1, 0],
|
||
[0, 1, 0, 0],
|
||
[0, 0, 0, 0]
|
||
];
|
||
return dfs(graph, 3);
|
||
})(),
|
||
[3]
|
||
);
|
||
```
|
||
|
||
输入图`[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]]` ,起始节点为`3`应该返回一个包含一个元素的数组。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var graph = [
|
||
[0, 1, 0, 0],
|
||
[1, 0, 1, 0],
|
||
[0, 1, 0, 0],
|
||
[0, 0, 0, 0]
|
||
];
|
||
return dfs(graph, 3);
|
||
})().length === 1
|
||
);
|
||
```
|
||
|
||
输入图`[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]` ,起始节点为`3`应该返回一个`2`和`3`的数组。
|
||
|
||
```js
|
||
assert.sameMembers(
|
||
(function () {
|
||
var graph = [
|
||
[0, 1, 0, 0],
|
||
[1, 0, 0, 0],
|
||
[0, 0, 0, 1],
|
||
[0, 0, 1, 0]
|
||
];
|
||
return dfs(graph, 3);
|
||
})(),
|
||
[2, 3]
|
||
);
|
||
```
|
||
|
||
输入图`[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]` ,起始节点为`3`应该返回一个包含两个元素的数组。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var graph = [
|
||
[0, 1, 0, 0],
|
||
[1, 0, 0, 0],
|
||
[0, 0, 0, 1],
|
||
[0, 0, 1, 0]
|
||
];
|
||
return dfs(graph, 3);
|
||
})().length === 2
|
||
);
|
||
```
|
||
|
||
输入图`[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]` ,起始节点为`0`应该返回一个`0`和`1`的数组。
|
||
|
||
```js
|
||
assert.sameMembers(
|
||
(function () {
|
||
var graph = [
|
||
[0, 1, 0, 0],
|
||
[1, 0, 0, 0],
|
||
[0, 0, 0, 1],
|
||
[0, 0, 1, 0]
|
||
];
|
||
return dfs(graph, 0);
|
||
})(),
|
||
[0, 1]
|
||
);
|
||
```
|
||
|
||
输入图`[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]` ,起始节点为`0`应该返回一个包含两个元素的数组。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var graph = [
|
||
[0, 1, 0, 0],
|
||
[1, 0, 0, 0],
|
||
[0, 0, 0, 1],
|
||
[0, 0, 1, 0]
|
||
];
|
||
return dfs(graph, 0);
|
||
})().length === 2
|
||
);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function dfs(graph, root) {
|
||
|
||
}
|
||
|
||
var exDFSGraph = [
|
||
[0, 1, 0, 0],
|
||
[1, 0, 1, 0],
|
||
[0, 1, 0, 1],
|
||
[0, 0, 1, 0]
|
||
];
|
||
console.log(dfs(exDFSGraph, 3));
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
function dfs(graph, root) {
|
||
var stack = [];
|
||
var tempV;
|
||
var visited = [];
|
||
var tempVNeighbors = [];
|
||
stack.push(root);
|
||
while (stack.length > 0) {
|
||
tempV = stack.pop();
|
||
if (visited.indexOf(tempV) == -1) {
|
||
visited.push(tempV);
|
||
tempVNeighbors = graph[tempV];
|
||
for (var i = 0; i < tempVNeighbors.length; i++) {
|
||
if (tempVNeighbors[i] == 1) {
|
||
stack.push(i);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return visited;
|
||
}
|
||
```
|