freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-143-investigating-the-torricelli-point-of-a-triangle.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.3 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f3fc1000cf542c50ff0e 问题143研究三角形的Torricelli点 5 problem-143-investigating-the-torricelli-point-of-a-triangle

--description--

设ABC为三角形所有内角均小于120度。设X为三角形内的任意点并使XA = pXC = qXB = r。 Fermat挑战Torricelli找到X的位置使p + q + r最小化。 Torricelli能够证明如果在三角形ABC的每一侧构造等边三角形AOBBNC和AMC则AOBBNC和AMC的外接圆将在三角形内的单个点T处相交。此外他证明了T称为Torricelli / Fermat点最小化p + q + r。更值得注意的是可以证明当总和最小化时AN = BM = CO = p + q + r并且ANBM和CO也在T处相交。

如果总和最小化并且abcpq和r都是正整数我们将称三角形ABC为Torricelli三角形。例如a = 399b = 455c = 511是Torricelli三角形的示例其中p + q + r = 784.找到Torricelli三角形的p + q +r≤120000的所有不同值的总和。

--hints--

euler143()应返回30758397。

assert.strictEqual(euler143(), 30758397);

--seed--

--seed-contents--

function euler143() {

  return true;
}

euler143();

--solutions--

// solution required