freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-216-investigating-the-primality-of-numbers-of-the-form-2n2-1.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

761 B
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f4451000cf542c50ff57 问题216调查2n2-1形式的数字的素数 5 problem-216-investigating-the-primality-of-numbers-of-the-form-2n2-1

--description--

考虑形式为tn= 2n2-1的数字tn其中n> 1.第一个这样的数字是7,17,31,49,71,97,127和161.事实证明只有49 = 7 * 7和161 = 7 * 23不是素数。对于n≤10000有2202个数字tn是素数。

对于n≤50,000,000有多少个数tn是素数

--hints--

euler216()应该返回5437849。

assert.strictEqual(euler216(), 5437849);

--seed--

--seed-contents--

function euler216() {

  return true;
}

euler216();

--solutions--

// solution required