Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.2 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f47f1000cf542c50ff91 问题274可分性乘数 5 problem-274-divisibility-multipliers

--description--

对于每个整数p> 1互质到10有一个正的可分性乘数m <p它对任何正整数n的后续函数保持p的可除性。

fn=除了n的最后一位以外的所有数字+n的最后一位* m

也就是说如果m是p的可分数乘数则当且仅当n可被p整除时fn可被p整除。

当n远大于p时fn将小于n并且f的重复应用为p提供乘法可除性测试。

例如113的可分性乘数是34。

f76275= 7627 + 5 34 = 779776275和7797都可以被113f12345= 1234 + 5 34 = 140412345和1404整除都不能被113整除

对于10和小于1000互质的素数的可除性乘数的总和是39517.对于10和小于107互质的素数的可除数乘数的总和是多少

--hints--

euler274()应该返回1601912348822。

assert.strictEqual(euler274(), 1601912348822);

--seed--

--seed-contents--

function euler274() {

  return true;
}

euler274();

--solutions--

// solution required