Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

51 lines
1.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f47f1000cf542c50ff91
title: 问题274可分性乘数
challengeType: 5
videoUrl: ''
dashedName: problem-274-divisibility-multipliers
---
# --description--
对于每个整数p> 1互质到10有一个正的可分性乘数m &lt;p它对任何正整数n的后续函数保持p的可除性。
fn=除了n的最后一位以外的所有数字+n的最后一位\* m
也就是说如果m是p的可分数乘数则当且仅当n可被p整除时fn可被p整除。
当n远大于p时fn将小于n并且f的重复应用为p提供乘法可除性测试。
例如113的可分性乘数是34。
f76275= 7627 + 5 *34 = 779776275和7797都可以被113f12345= 1234 + 5* 34 = 140412345和1404整除都不能被113整除
对于10和小于1000互质的素数的可除性乘数的总和是39517.对于10和小于107互质的素数的可除数乘数的总和是多少
# --hints--
`euler274()`应该返回1601912348822。
```js
assert.strictEqual(euler274(), 1601912348822);
```
# --seed--
## --seed-contents--
```js
function euler274() {
return true;
}
euler274();
```
# --solutions--
```js
// solution required
```