* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.0 KiB
1.0 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f4831000cf542c50ff95 | 问题278:半正定的线性组合 | 5 | problem-278-linear-combinations-of-semiprimes |
--description--
给定整数1 <a1 <a2 <... <an的值,考虑线性组合q1a1 + q2a2 + ... + qnan = b,仅使用整数值qk≥0。
注意,对于给定的ak集合,可能不是b的所有值都是可能的。例如,如果a1 = 5且a2 = 7,则没有q1≥0且q2≥0使得b可以是1,2,3,4,6,8,9,11,13,16,18或23 。
事实上,23是a1 = 5和a2 = 7的b的最大不可能值。因此,我们称f(5,7)= 23.同样,可以证明f(6,10,15)= 29和f(14,22,77)= 195。
找到Σf(p q,p r,q * r),其中p,q和r是素数,p <q <r <5000。
--hints--
euler278()
应该返回1228215747273908500。
assert.strictEqual(euler278(), 1228215747273908500);
--seed--
--seed-contents--
function euler278() {
return true;
}
euler278();
--solutions--
// solution required